40 research outputs found

    Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression

    Get PDF
    Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10-8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.Peer Reviewe

    IgE-Mediated Enhancement of CD4(+) T Cell Responses in Mice Requires Antigen Presentation by CD11c(+) Cells and Not by B Cells

    Get PDF
    IgE antibodies, administered to mice together with their specific antigen, enhance antibody and CD4(+) T cell responses to this antigen. The effect is dependent on the low affinity receptor for IgE, CD23, and the receptor must be expressed on B cells. In vitro, IgE-antigen complexes are endocytosed via CD23 on B cells, which subsequently present the antigen to CD4(+) T cells. This mechanism has been suggested to explain also IgE-mediated enhancement of immune responses in vivo. We recently found that CD23(+) B cells capture IgE-antigen complexes in peripheral blood and rapidly transport them to B cell follicles in the spleen. This provides an alternative explanation for the requirement for CD23(+) B cells. The aim of the present study was to determine whether B-cell mediated antigen presentation of IgE-antigen complexes explains the enhancing effect of IgE on immune responses in vivo. The ability of spleen cells, taken from mice 1-4 h after immunization with IgE-antigen, to present antigen to specific CD4(+) T cells was analyzed. Antigen presentation was intact when spleens were depleted of CD19(+) cells (i.e., primarily B cells) but was severely impaired after depletion of CD11c(+) cells (i.e., primarily dendritic cells). In agreement with this, the ability of IgE to enhance proliferation of CD4(+) T cells was abolished in CD11c-DTR mice conditionally depleted of CD11c(+) cells. Finally, the lack of IgE-mediated enhancemen of CD4(+) T cell responses in CD23(-/-) mice could be rescued by transfer of MHC-II-compatible as well as by MHC-II-incompatible CD23(+) B cells. These findings argue against the idea that IgE-mediated enhancement of specific CD4(+) T cell responses in vivo is caused by increased antigen presentation by B cells. A model where CD23(+) B cells act as antigen transporting cells, delivering antigen to CD11c(+) cells for presentation to T cells is consistent with available experimental data

    Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus

    No full text
    Systemic lupus erythematosus (SLE, MIM152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic re-sequencing in ethnically diverse populations, we fully characterized the TNFAIP3 risk haplotype and identified a TT>A polymorphic dinucleotide (deletion T followed by a T to A transversion) associated with SLE in subjects of European (P = 1.58 × 10-8, odds ratio = 1.70) and Korean (P = 8.33 × 10-10, odds ratio = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex composed of NF-κB subunits with reduced avidity. Further, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT>A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE. © 2011 Nature America, Inc. All rights reserved.Peer Reviewe
    corecore