210 research outputs found

    Low-Temperature Series for Ising Model by Finite-Lattice Method

    Get PDF
    We have calculated the low-temperature series for the second moment of the correlation function in d=3d=3 Ising model to order u26u^{26} and for the free energy of Absolute Value Solid-on-Solid (ASOS) model to order u23u^{23}, using the finite-lattice method.Comment: 3pages, latex, no figures, talk given at LATTICE'94, to appear in the proceeding

    Higher orders of the high-temperature expansion for the Ising model in three dimensions

    Full text link
    The new algorithm of the finite lattice method is applied to generate the high-temperature expansion series of the simple cubic Ising model to β50\beta^{50} for the free energy, to β32\beta^{32} for the magnetic susceptibility and to β29\beta^{29} for the second moment correlation length. The series are analyzed to give the precise value of the critical point and the critical exponents of the model.Comment: Lattice2003(Higgs), 3 pages, 2 figure

    Osculating and neighbour-avoiding polygons on the square lattice

    Full text link
    We study two simple modifications of self-avoiding polygons. Osculating polygons are a super-set in which we allow the perimeter of the polygon to touch at a vertex. Neighbour-avoiding polygons are only allowed to have nearest neighbour vertices provided these are joined by the associated edge and thus form a sub-set of self-avoiding polygons. We use the finite lattice method to count the number of osculating polygons and neighbour-avoiding polygons on the square lattice. We also calculate their radius of gyration and the first area-weighted moment. Analysis of the series confirms exact predictions for the critical exponents and the universality of various amplitude combinations. For both cases we have found exact solutions for the number of convex and almost-convex polygons.Comment: 14 pages, 5 figure

    Large-q expansion of the energy and magnetization cumulants for the two-dimensional q-state Potts model

    Get PDF
    We have calculated the large-q expansion for the energy cumulants and the magnetization cumulants at the phase transition point in the two-dimensional q-state Potts model to the 21st or 23rd order in 1/q1/\sqrt{q} using the finite lattice method. The obtained series allow us to give very precise estimates of the cumulants for q>4q>4 on the first order transition point. The result confirms us the correctness of the conjecture by Bhattacharya et al. on the asymptotic behavior not only of the energy cumulants but also of the magnetization cumulants for q4+q \to 4_+.Comment: 36 pages, LaTeX, 20 postscript figures, to appear in Nuclear Physics

    Low-Temperature Series for the Correlation Length in d=3d=3 Ising Model

    Get PDF
    We extend low-temperature series for the second moment of the correlation function in d=3d=3 simple-cubic Ising model from u15u^{15} to u26u^{26} using finite-lattice method, and combining with the series for the susceptibility we obtain the low-temperature series for the second-moment correlation length to u23u^{23}. An analysis of the obtained series by inhomogeneous differential approximants gives critical exponents 2ν+γ2.55 2\nu^{\prime} + \gamma^{\prime} \approx 2.55 and 2ν1.27 2\nu^{\prime} \approx 1.27 .Comment: 13 pages + 5 uuencoded epsf figures in Latex, OPCT-94-

    Large-qq expansion of the specific heat for the two-dimensional qq-state Potts model

    Get PDF
    We have calculated the large-qq expansion for the specific heat at the phase transition point in the two-dimensional qq-state Potts model to the 23rd order in 1/q1/\sqrt{q} using the finite lattice method. The obtained series allows us to give highly convergent estimates of the specific heat for q>4q>4 on the first order transition point. The result confirm us the correctness of the conjecture by Bhattacharya et al. on the asymptotic behavior of the specific heat for q4+q \to 4_+.Comment: 7 pages, LaTeX, 2 postscript figure

    Exact Scaling Functions for Self-Avoiding Loops and Branched Polymers

    Full text link
    It is shown that a recently conjectured form for the critical scaling function for planar self-avoiding polygons weighted by their perimeter and area also follows from an exact renormalization group flow into the branched polymer problem, combined with the dimensional reduction arguments of Parisi and Sourlas. The result is generalized to higher-order multicritical points, yielding exact values for all their critical exponents and exact forms for the associated scaling functions.Comment: 5 pages; v2: factors of 2 corrected; v.3: relation with existing theta-point results clarified, some references added/update

    Series studies of the Potts model. II: Bulk series for the square lattice

    Full text link
    The finite lattice method of series expansion has been used to extend low-temperature series for the partition function, order parameter and susceptibility of the qq-state Potts model to order z56z^{56} (i.e. u28u^{28}), z47z^{47}, z43z^{43}, z39z^{39}, z39z^{39}, z39z^{39}, z35z^{35}, z31z^{31} and z31z^{31} for q=2q = 2, 3, 4, \dots 9 and 10 respectively. These series are used to test techniques designed to distinguish first-order transitions from continuous transitions. New numerical values are also obtained for the qq-state Potts model with q>4q>4.Comment: 32 pages, incl. 3 figures, incl. 3 figure

    Perimeter Generating Functions For The Mean-Squared Radius Of Gyration Of Convex Polygons

    Full text link
    We have derived long series expansions for the perimeter generating functions of the radius of gyration of various polygons with a convexity constraint. Using the series we numerically find simple (algebraic) exact solutions for the generating functions. In all cases the size exponent ν=1\nu=1.Comment: 8 pages, 1 figur

    Series expansions without diagrams

    Full text link
    We discuss the use of recursive enumeration schemes to obtain low and high temperature series expansions for discrete statistical systems. Using linear combinations of generalized helical lattices, the method is competitive with diagramatic approaches and is easily generalizable. We illustrate the approach using the Ising model and generate low temperature series in up to five dimensions and high temperature series in three dimensions. The method is general and can be applied to any discrete model. We describe how it would work for Potts models.Comment: 24 pages, IASSNS-HEP-93/1
    corecore