30 research outputs found

    Comparison of Sulfur Incorporation into CuInSe(2)and CuGaSe(2)Thin-Film Solar Absorbers

    No full text
    Herein, sulfurization of CuInSe(2)and CuGaSe2(CGSe) absorber layers is compared to improve the understanding of sulfur incorporation into Cu(In,Ga)Se(2)films by annealing in a sulfur atmosphere. It is found for Cu-poor CuInSe(2)that for an annealing temperature of 430 degrees C, sulfur is incorporated into the surface of the absorber and forms an inhomogeneous CuIn(S,Se)(2)layer. In addition, at 530 degrees C, a surface layer of CuInS(2)is formed. In contrast, for Cu-poor CuGaSe(2)samples, S can only be introduced at 530 degrees C, mainly forming an alloy of CuGa(S,Se)(2), where no closed CuGaS(2)layer is found. In Cu-rich CuGaSe(2)samples, however, selenium is substituted by S already at 330 degrees C, which can be explained by a rapid phase transformation of Cu2 - xSe into Cu2 - x(S,Se). This transformation facilitates S in-diffusion and catalyzes CuGa(S,Se)(2)formation, likewise that previously reported to occur in CuInSe2. Finally, the Cu-poor CuInSe(2)solar cell performance is improved by the sulfurization step at 430 degrees C, whereas for the 530 degrees C sample, a decreasing fill factor and short-circuit current density are observed, indicating lower diffusion length accompanied by possible formation of an electron transport barrier. In contrast, the electrical characteristics deteriorate for all sulfurized Cu-poor CuGaSe(2)cells

    On the Paramount Role of Absorber Stoichiometry in (Ag,Cu)(In,Ga)Se2 Wide‐Gap Solar Cells

    No full text
    This contribution evaluates the effect of absorber off‐stoichiometry in wide‐gap (Ag,Cu)(In,Ga)Se2 (ACIGS) solar cells. It is found that ACIGS films show an increased tendency to form ordered vacancy compounds (OVCs) with increasing Ga and Ag contents. Very little tolerance to off‐stoichiometry is detected for absorber compositions giving the desired properties of 1) an optimum bandgap (EG) for a top cell in tandem devices (EG = 1.6–1.7 eV) and at the same time 2) a favorable band alignment with a CdS buffer layer. Herein, massive formation of either In‐ or Ga‐enriched OVC patches is found for group I‐poor ACIGS. As a consequence, carrier transport and charge collection are significantly impeded in corresponding solar cells. The transport barrier appears to be increasing with storage time, questioning the long‐term stability of wide‐gap ACIGS solar cells. Furthermore, the efficiency of samples with very high Ga and Ag contents depends on the voltage sweep direction. It is proposed that the hysteresis behavior is caused by a redistribution of mobile Na ions in the 1:1:2 absorber lattice upon voltage bias. Finally, a broader perspective on OVC formation in the ACIGS system is provided and fundamental limitations for wide‐gap ACIGS solar cells are discussed.

    Experimental and Theoretical Study of Stable and Metastable Phases in Sputtered CuInS2

    No full text
    The chalcopyrite Cu(In,Ga)S-2 has gained renewed interest in recent years due to the potential application in tandem solar cells. In this contribution, a combined theoretical and experimental approach is applied to investigate stable and metastable phases forming in CuInS2 (CIS) thin films. Ab initio calculations are performed to obtain formation energies, X-ray diffraction (XRD) patterns, and Raman spectra of CIS polytypes and related compounds. Multiple CIS structures with zinc-blende and wurtzite-derived lattices are identified and their XRD/Raman patterns are shown to contain overlapping features, which could lead to misidentification. Thin films with compositions from Cu-rich to Cu-poor are synthesized via a two-step approach based on sputtering from binary targets followed by high-temperature sulfurization. It is discovered that several CIS polymorphs are formed when growing the material with this approach. In the Cu-poor material, wurtzite CIS is observed for the first time in sputtered thin films along with chalcopyrite CIS and CuAu-ordered CIS. Once the wurtzite CIS phase has formed, it is difficult to convert into the stable chalcopyrite polymorph. CuIn5S8 and NaInS2 accommodating In-excess are found alongside the CIS polymorphs. It is argued that the metastable polymorphs are stabilized by off-stoichiometry of the precursors, hence tight composition control is required

    Off-stoichiometry in I-III-VI2 chalcopyrite absorbers : a comparative analysis of structures and stabilities

    No full text
    Chalcopyrite Cu(In,Ga)Se-2 (CIGSe) solar absorbers are renowned for delivering high solar power conversion efficiency despite containing high concentration of lattice defects amounting to copper deficiencies of several atomic percent. The unique ability to incorporate this deficiency without triggering decomposition (i.e. "tolerance to off-stoichiometry") is viewed by many as the key feature of CIGSe. In principle, this property could benefit any solar absorber, but remarkably little attention has been paid to it so far. In this study, we assess the tolerance to off-stoichiometry of thin-film photovoltaic materials by carrying out ab initio analysis of group-I-poor ordered defect compounds (ODCs) in the extended family of I-III-VI systems (where I = Cu, Ag, III = Al, Ga, In, and VI = S, Se, Te). We analyze convex hulls and structural evolution with respect to group-I content, link them with experimental phase diagrams, and determine two empirical principles for the future identification of solar energy materials with high tolerance to off-stoichiometry. Practical implications for the deposition of I-III-VI absorbers are also discussed in light of our computational results and recent experimental findings

    Alkali Dispersion in (Ag,Cu)(In,Ga)Se-2 Thin Film Solar Cells-Insight from Theory and Experiment

    Get PDF
    Silver alloying of Cu(In,Ga)Se-2 absorbers for thin film photovoltaics offers improvements in open-circuit voltage, especially when combined with optimal alkali-treatments and certain Ga concentrations. The relationship between alkali distribution in the absorber and Ag alloying is investigated here, combining experimental and theoretical studies. Atom probe tomography analysis is implemented to quantify the local composition in grain interiors and at grain boundaries. The Na concentration in the bulk increases up to similar to 60 ppm for [Ag]/([Ag] + [Cu]) = 0.2 compared to similar to 20 ppm for films without Ag and up to similar to 200 ppm for [Ag]/([Ag] + [Cu]) = 1.0. First-principles calculations were employed to evaluate the formation energies of alkali-on-group-I defects (where group-I refers to Ag and Cu) in (Ag,Cu)(In,Ga)Se-2 as a function of the Ag and Ga contents. The computational results demonstrate strong agreement with the nanoscale analysis results, revealing a clear trend of increased alkali bulk solubility with the Ag concentration. The present study, therefore, provides a more nuanced understanding of the role of Ag in the enhanced performance of the respective photovoltaic devices

    Development of sensory innervation in rat tibia: co-localization of CGRP and substance P with growth-associated protein 43 (GAP-43)

    No full text
    The development of sensory innervation in long bones was investigated in rat tibia in fetuses on gestational days (GD) 16–21 and in neonates and juvenile individuals on postnatal days (PD) 1–28. A double immunostaining method was applied to study the co-localization of the neuronal growth marker growth-associated protein 43 (GAP-43) and the pan-neuronal marker protein gene product 9.5 (PGP 9.5) as well as that of two sensory fibre-associated neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP). The earliest, not yet chemically coded, nerve fibres were observed on GD17 in the perichondrium of the proximal epiphysis. Further development of the innervation was characterized by the successive appearance of nerve fibres in the perichondrium/periosteum of the shaft (GD19), the bone marrow cavity and intercondylar eminence (GD21), the metaphyses (PD1), the cartilage canals penetrating into the epiphyses (PD7), and finally in the secondary ossification centres (PD10) and epiphyseal bone marrow (PD14). Maturation of the fibres, manifested by their immunoreactivity for CGRP and SP, was visible on GD21 in the epiphyseal perichondrium, the periosteum of the shaft and the bone marrow, on PD1 in the intercondylar eminence and the metaphyses, on PD7 in the cartilage canals, on PD10 in the secondary ossification centres and on PD14 in the epiphyseal bone marrow. The temporal and topographic pattern of nerve fibre appearance corresponds with the development of regions characterized by active mineralization and bone remodelling, suggesting a possible involvement of the sensory innervation in these processes
    corecore