265 research outputs found

    The development of a natural plankton population in an outdoor tank with nutrient-poor sea water. II. Changes in dissolved carbohydrates and amino acids

    Get PDF
    terrelations between plankton communities and dissolved carbohydrates and amino acids were investigated under near-natural conditions in sea water enclosed in plastic tanks. In summer 1972 the development of a natural plankton population was followed in a 3-m3 plastic tank for 28 d. In the course of this experiment, concentrations of dissolved neutral carbohydrates and free amino acids were determined. Results are in the range of published data for the open sea with respect to concentrations (0.2-2.5 pnoles dm-3 total sugar; 0.2-3.1 pnoles dm3 total amino acids) and qualitative composition. A plankton succession was observed during the experiment; this was accompanied by distinct alterations in the concentrations of dissolved amino acids and carbohydrates. Glucose and lysine occurred in highest concentrations. Maximum rate of increase was 29 nmoles dm3 h-' for glucose, and 25 nmoles dm3 h-' for lysine. The rates of decrease are in the same range as bacterial uptake rates determined by various authors employing tracer methods. Numerous positive, highly significant correlations suggest heteropoly- saccharides as one source of individual carbohydrates. Relations between certain species within the plankton succession and occurrence of dissolved organic substances were observed. Significant positive correlations existed between glucose and diatoms as well as between glucose, galactose, mannose, arabinose and ribose and phytoplankton biomass. There were also several significant positive correlations of amino acids, especially of valine, leucine and isoleucine with other biological parameters

    Structural Studies on Alkylisocyanate Polymers by Thermal Degradation Tandem Mass Spectrometry

    Get PDF
    AbstractHomopolymers and copolymers of alkylisocyanates having n-hexyl, 2,6-dimethylheptyl, 3,7-dimethyloctyl, and (2,2-dimethyl-1,3-dioxolan-4-yl)methyl substituents underwent thermal degradation in the course of desorption electron ionization to yield trimers and monomers that were characterized in situ by tandem mass spectrometry. The trimers were trisubstituted cyanuric acids, the protonated molecules displaying a characteristic series of alkene eliminations on collision-induced dissociation to yield protonated cyanuric acid, m/z 130. Confirmation of the identity of the pyrolysates was obtained by using two types of MS3 experiments: the reaction intermediate scan and the two-dimensional familial scan. The ion chemistry of the trimers and of the protonated monomer, the alkylisocyanate, was elucidated. Among the many interesting fragmentation processes undergone by the ionized trimers were α and β CC bond cleavages and charge-remote fragmentations, which provided information on branching in the alkyl substituent. The dioxolane-containing substituent showed unique ion chemistry. The monomer distribution in the copolymers was deduced from the abundances of the various protonated trimers. The distribution was found to be random in all copolymers except that containing the dioxolane substituent

    Fingerprinting of propolis by easy ambient sonic-spray ionization mass spectrometry

    Get PDF
    Chemical profiles of a representative set of 49 propolis ethanolic extracts collected worldwide (North and South America, Europe, Asia and Oceania) were obtained via easy ambient sonic-spray ionization mass spectrometry (EASI-MS). This simple and easily implemented fingerprinting technique analyses directly (without any pre-separation or sample manipulation) a tiny droplet of the ethanolic extract placed on a inert surface under ambient conditions. Data acquisition took about a minute per sample with no substantial sample carry-over. Extraction of propolis with ethanol by using an ultrasonic bath method gave EASI-MS data similar to the traditional maceration method, reducing total analysis time for the crude propolis resin from a week to just ca 1 h. Principal component analysis of the EASI-MS data is shown to group samples according to the plant sources of their resins, which characterizes their geographical origin. © 2009 Elsevier B.V. All rights reserved

    Cholesterol Sulfonation Enzyme, SULT2B1b, Modulates AR and Cell Growth Properties in Prostate Cancer

    Get PDF
    Cholesterol accumulates in prostate lesions and has been linked to prostate cancer (PCa) incidence and progression. However, how accumulated cholesterol contributes to PCa development and progression is not completely understood. Cholesterol sulfate (CS), the primary sulfonation product of cholesterol sulfotransferase (SULT2B1b), accumulates in human prostate adenocarcinoma and precancerous prostatic intraepithelial neoplasia (PIN) lesions compared to normal regions of the same tissue sample. Given the enhanced accumulation of CS in these lesions, it was hypothesized that SULT2B1b-mediated production of CS provides a growth advantage to these cells. To address this, PCa cells with RNAi-mediated knockdown (KD) of SULT2B1b were used to assess the impact on cell growth and survival. SULT2B1b is expressed and functional in a variety of prostate cells and the data demonstrate that SULT2B1b KD, in LNCaP and other androgen-responsive (VCaP and C4-2) cells, results in decreased cell growth/viability and induces cell death. SULT2B1b KD also decreases androgen receptor (AR) activity and expression at mRNA and protein levels. While AR overexpression has no impact on SULT2B1b KD-mediated cell death, addition of exogenous androgen is able to partially rescue the growth inhibition induced by SULT2B1b KD in LNCaP cells. These results suggest that SULT2B1b positively regulates the AR either through alterations in ligand availability or by interaction with critical co-regulators that influence AR activity

    Visualization of acetylcholine distribution in central nervous system tissue sections by tandem imaging mass spectrometry

    Get PDF
    Metabolite distribution imaging via imaging mass spectrometry (IMS) is an increasingly utilized tool in the field of neurochemistry. As most previous IMS studies analyzed the relative abundances of larger metabolite species, it is important to expand its application to smaller molecules, such as neurotransmitters. This study aimed to develop an IMS application to visualize neurotransmitter distribution in central nervous system tissue sections. Here, we raise two technical problems that must be resolved to achieve neurotransmitter imaging: (1) the lower concentrations of bioactive molecules, compared with those of membrane lipids, require higher sensitivity and/or signal-to-noise (S/N) ratios in signal detection, and (2) the molecular turnover of the neurotransmitters is rapid; thus, tissue preparation procedures should be performed carefully to minimize postmortem changes. We first evaluated intrinsic sensitivity and matrix interference using Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry (MS) to detect six neurotransmitters and chose acetylcholine (ACh) as a model for study. Next, we examined both single MS imaging and MS/MS imaging for ACh and found that via an ion transition from m/z 146 to m/z 87 in MS/MS imaging, ACh could be visualized with a high S/N ratio. Furthermore, we found that in situ freezing method of brain samples improved IMS data quality in terms of the number of effective pixels and the image contrast (i.e., the sensitivity and dynamic range). Therefore, by addressing the aforementioned problems, we demonstrated the tissue distribution of ACh, the most suitable molecular specimen for positive ion detection by IMS, to reveal its localization in central nervous system tissues
    • …
    corecore