134 research outputs found

    The Josephson heat interferometer

    Full text link
    The Josephson effect represents perhaps the prototype of macroscopic phase coherence and is at the basis of the most widespread interferometer, i.e., the superconducting quantum interference device (SQUID). Yet, in analogy to electric interference, Maki and Griffin predicted in 1965 that thermal current flowing through a temperature-biased Josephson tunnel junction is a stationary periodic function of the quantum phase difference between the superconductors. The interplay between quasiparticles and Cooper pairs condensate is at the origin of such phase-dependent heat current, and is unique to Josephson junctions. In this scenario, a temperature-biased SQUID would allow heat currents to interfere thus implementing the thermal version of the electric Josephson interferometer. The dissipative character of heat flux makes this coherent phenomenon not less extraordinary than its electric (non-dissipative) counterpart. Albeit weird, this striking effect has never been demonstrated so far. Here we report the first experimental realization of a heat interferometer. We investigate heat exchange between two normal metal electrodes kept at different temperatures and tunnel-coupled to each other through a thermal `modulator' in the form of a DC-SQUID. Heat transport in the system is found to be phase dependent, in agreement with the original prediction. With our design the Josephson heat interferometer yields magnetic-flux-dependent temperature oscillations of amplitude up to ~21 mK, and provides a flux-to-temperature transfer coefficient exceeding ~ 60mK/Phi_0 at 235 mK [Phi_0 2* 10^(-15) Wb is the flux quantum]. Besides offering remarkable insight into thermal transport in Josephson junctions, our results represent a significant step toward phase-coherent mastering of heat in solid-state nanocircuits, and pave the way to the design of novel-concept coherent caloritronic devices.Comment: 4+ pages, 3 color figure

    Thermally driven spin injection from a ferromagnet into a non-magnetic metal

    Get PDF
    Creating, manipulating and detecting spin polarized carriers are the key elements of spin based electronics. Most practical devices use a perpendicular geometry in which the spin currents, describing the transport of spin angular momentum, are accompanied by charge currents. In recent years, new sources of pure spin currents, i.e., without charge currents, have been demonstrated and applied. In this paper, we demonstrate a conceptually new source of pure spin current driven by the flow of heat across a ferromagnetic/non-magnetic metal (FM/NM) interface. This spin current is generated because the Seebeck coefficient, which describes the generation of a voltage as a result of a temperature gradient, is spin dependent in a ferromagnet. For a detailed study of this new source of spins, it is measured in a non-local lateral geometry. We developed a 3D model that describes the heat, charge and spin transport in this geometry which allows us to quantify this process. We obtain a spin Seebeck coefficient for Permalloy of -3.8 microvolt/Kelvin demonstrating that thermally driven spin injection is a feasible alternative for electrical spin injection in, for example, spin transfer torque experiments

    Efficiency of Energy Conversion in Thermoelectric Nanojunctions

    Full text link
    Using first-principles approaches, this study investigated the efficiency of energy conversion in nanojunctions, described by the thermoelectric figure of merit ZTZT. We obtained the qualitative and quantitative descriptions for the dependence of ZTZT on temperatures and lengths. A characteristic temperature: T0=β/γ(l)T_{0}= \sqrt{\beta/\gamma(l)} was observed. When TT0T\ll T_{0}, ZTT2ZT\propto T^{2}. When TT0T\gg T_{0}, ZTZT tends to a saturation value. The dependence of ZTZT on the wire length for the metallic atomic chains is opposite to that for the insulating molecules: for aluminum atomic (conducting) wires, the saturation value of ZTZT increases as the length increases; while for alkanethiol (insulating) chains, the saturation value of ZTZT decreases as the length increases. ZTZT can also be enhanced by choosing low-elasticity bridging materials or creating poor thermal contacts in nanojunctions. The results of this study may be of interest to research attempting to increase the efficiency of energy conversion in nano thermoelectric devices.Comment: 2 figure

    Nonlinear thermoelectric response of quantum dots: renormalized dual fermions out of equilibrium

    Full text link
    The thermoelectric transport properties of nanostructured devices continue to attract attention from theorists and experimentalist alike as the spatial confinement allows for a controlled approach to transport properties of correlated matter. Most of the existing work, however, focuses on thermoelectric transport in the linear regime despite the fact that the nonlinear conductance of correlated quantum dots has been studied in some detail throughout the last decade. Here, we review our recent work on the effect of particle-hole asymmetry on the nonlinear transport properties in the vicinity of the strong coupling limit of Kondo-correlated quantum dots and extend the underlying method, a renormalized superperturbation theory on the Keldysh contour, to the thermal conductance in the nonlinear regime. We determine the charge, energy, and heat current through the nanostructure and study the nonlinear transport coefficients, the entropy production, and the fate of the Wiedemann-Franz law in the non-thermal steady-state. Our approach is based on a renormalized perturbation theory in terms of dual fermions around the particle-hole symmetric strong-coupling limit.Comment: chapter contributed to 'New Materials for Thermoelectric Applications: Theory and Experiment' Springer Series: NATO Science for Peace and Security Series - B: Physics and Biophysics, Veljko Zlatic (Editor), Alex Hewson (Editor). ISBN: 978-9400749863 (2012

    Effect of Thermoelectric Cooling in Nanoscale Junctions

    Full text link
    We propose a thermoelectric cooling device based on an atomic-sized junction. Using first-principles approaches, we investigate the working conditions and the coefficient of performance (COP) of an atomic-scale electronic refrigerator where the effects of phonon's thermal current and local heating are included. It is observed that the functioning of the thermoelectric nano-refrigerator is restricted to a narrow range of driving voltages. Compared with the bulk thermoelectric system with the overwhelmingly irreversible Joule heating, the 4-Al atomic refrigerator has a higher efficiency than a bulk thermoelectric refrigerator with the same ZTZT due to suppressed local heating via the quasi-ballistic electron transport and small driving voltages. Quantum nature due to the size minimization offered by atomic-level control of properties facilitates electron cooling beyond the expectation of the conventional thermoelectric device theory.Comment: 8 figure

    Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition

    Full text link
    The competition between superconductivity and localization raises profound questions in condensed matter physics. In spite of decades of research, the mechanism of the superconductor-insulator transition (SIT) and the nature of the insulator are not understood. We use quantum Monte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures

    From thermal rectifiers to thermoelectric devices

    Full text link
    We discuss thermal rectification and thermoelectric energy conversion from the perspective of nonequilibrium statistical mechanics and dynamical systems theory. After preliminary considerations on the dynamical foundations of the phenomenological Fourier law in classical and quantum mechanics, we illustrate ways to control the phononic heat flow and design thermal diodes. Finally, we consider the coupled transport of heat and charge and discuss several general mechanisms for optimizing the figure of merit of thermoelectric efficiency.Comment: 42 pages, 22 figures, review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Spin-orbit density wave induced hidden topological order in URu2Si2

    Full text link
    The conventional order parameters in quantum matters are often characterized by 'spontaneous' broken symmetries. However, sometimes the broken symmetries may blend with the invariant symmetries to lead to mysterious emergent phases. The heavy fermion metal URu2Si2 is one such example, where the order parameter responsible for a second-order phase transition at Th = 17.5 K has remained a long-standing mystery. Here we propose via ab-initio calculation and effective model that a novel spin-orbit density wave in the f-states is responsible for the hidden-order phase in URu2Si2. The staggered spin-orbit order 'spontaneous' breaks rotational, and translational symmetries while time-reversal symmetry remains intact. Thus it is immune to pressure, but can be destroyed by magnetic field even at T = 0 K, that means at a quantum critical point. We compute topological index of the order parameter to show that the hidden order is topologically invariant. Finally, some verifiable predictions are presented.Comment: (v2) Substantially modified from v1, more calculation and comparison with experiments are include

    Effects of interdot hopping and Coulomb blockade on the thermoelectric properties of serially coupled quantum dots

    Get PDF
    We have theoretically studied the thermoelectric properties of serially coupled quantum dots (SCQD) embedded in an insulator matrix connected to metallic electrodes. In the framework of Keldysh Green's function technique, the Landauer formula of transmission factor is obtained by using the equation of motion method. Based on such analytical expressions of charge and heat currents, we calculate the electrical conductance, Seebeck coefficient, electron thermal conductance and figure of merit (ZT) of SCQD in the linear response regime. The effects of electron Coulomb interactions on the reduction and enhancement of ZT are analyzed. We demonstrate that ZT is not a monotonic increasing function of interdot electron hopping strength (tct_c). We also show that in the absence of phonon thermal conductance, SCQD can reach the Carnot efficiency as tct_c approaches zero.Comment: corrected some argumenet
    corecore