408 research outputs found

    Studies of vertical wind profiles at Cape Kennedy, Florida Final report

    Get PDF
    Vertical wind profiles spectral analysis and numerical wind forecasts at Cape Kenned

    Spontaneous radiative decay of translational levels of an atom near a dielectric surface

    Get PDF
    We study spontaneous radiative decay of translational levels of an atom in the vicinity of a semi-infinite dielectric. We systematically derive the microscopic dynamical equations for the spontaneous decay process. We calculate analytically and numerically the radiative linewidths and the spontaneous transition rates for the translational levels. The roles of the interference between the emitted and reflected fields and of the transmission into the evanescent modes are clearly identified. Our numerical calculations for the silica--cesium interaction show that the radiative linewidths of the bound excited levels with large enough but not too large vibrational quantum numbers are moderately enhanced by the emission into the evanescent modes and those for the deep bound levels are substantially reduced by the surface-induced red shift of the transition frequency

    Backaction in metasurface etalons

    Get PDF
    We consider the response of etalons created by a combination of a conventional mirror and a metasurface, composed of a periodic lattice of metal scatterers with a resonant response. This geometry has been used previously for perfect absorption, in so-called Salisbury screens, and for hybridization of localized plasmons with Fabry-Perot resonances. The particular aspect we address is if one can assume an environment-independent reflectivity for the metasurface when calculating the reflectivity of the composite system, as in a standard Fabry-Perot analysis, or whether the fact that the metasurface interacts with its own mirror image renormalizes its response. Using lattice sum theory, we take into account all possible retarded dipole-dipole interactions of scatterers in the metasurface amongst each other, and through the mirror. We show that while a layer-by-layer Fabry-Perot formalism captures the main qualitative features of metasurface etalons, in fact the mirror modifies both the polarizability and reflectivity of the metasurface in a fashion that is akin to Drexhage's modification of the radiative properties of a single dipole.Comment: 10 pages, 5 figure

    Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals

    Get PDF
    We observe experimentally that ensembles of quantum dots in three-dimensional (3D) photonic crystals reveal strongly nonexponential time-resolved emission. These complex emission decay curves are analyzed with a continuous distribution of decay rates. The log-normal distribution describes the decays well for all studied lattice parameters. The distribution width is identified with variations of the radiative emission rates of quantum dots with various positions and dipole orientations in the unit cell. We find a striking sixfold change of the width of the distribution by varying the lattice parameter. This interpretation qualitatively agrees with the calculations of the 3D projected local density of states. We therefore conclude that fluorescence decay of ensembles of quantum dots is highly nonexponential to an extent that is controlled by photonic crystals

    Measuring the quantum efficiency of single radiating dipoles using a scanning mirror

    Full text link
    Using scanning probe techniques, we show the controlled manipulation of the radiation from single dipoles. In one experiment we study the modification of the fluorescence lifetime of a single molecular dipole in front of a movable silver mirror. A second experiment demonstrates the changing plasmon spectrum of a gold nanoparticle in front of a dielectric mirror. Comparison of our data with theoretical models allows determination of the quantum efficiency of each radiating dipole.Comment: 4 pages, 4 figure

    Opposing effects of dehydroepiandrosterone and dexamethasone on the generation of monocyte-derived dendritic cells

    Get PDF
    BACKGROUND: Dehydroepiandrosterone (DHEA) has been suggested as an immunostimulating steroid hormone, of which the effects on the development of dendritic cells (DC) are unknown. The effects of DHEA often oppose those of the other adrenal glucocorticoid, cortisol. Glucocorticoids (GC) are known to suppress the immune response at different levels and have recently been shown to modulate the development of DC, thereby influencing the initiation of the immune response. Variations in the duration of exposure to, and doses of, GC (particularly dexamethasone (DEX)) however, have resulted in conflicting effects on DC development. AIM: In this study, we describe the effects of a continuous high level of exposure to the adrenal steroid DHEA (10 M) on the generation of immature DC from monocytes, as well as the effects of the opposing steroid DEX on this development. RESULTS: The continuous presence of DHEA (10 M) in GM-CSF/IL-4-induced monocyte-derived DC cultures resulted in immature DC with a morphology and functional capabilities similar to those of typical immature DC (T cell stimulation, IL-12/IL-10 production), but with a slightly altered phenotype of increased CD80 and decreased CD43 expression (markers of maturity). The continuous presence of DEX at a concentration of 10 M in the monocyte/DC cultures resulted in the generation of plastic-adherent macrophage-like cells in place of typical immature DC, with increased CD14 expression, but decreased expression of the typical DC markers CD1a, CD40 and CD80. These cells were strongly reactive to acid phosphatase, but equally capable of stimulating T cell prolifer

    Statistical properties of spontaneous emission near a rough surface

    Full text link
    We study the lifetime of the excited state of an atom or molecule near a plane surface with a given random surface roughness. In particular, we discuss the impact of the scattering of surface modes within the rough surface. Our study is completed by considering the lateral correlation length of the decay rate and the variance discussing its relation to the C0 correlation

    Strongly Coupled Matter-Field and Non-Analytic Decay Rate of Dipole Molecules in a Waveguide

    Full text link
    The decay rate \gam of an excited dipole molecule inside a waveguide is evaluated for the strongly coupled matter-field case near a cutoff frequency \ome_c without using perturbation analysis. Due to the singularity in the density of photon states at the cutoff frequency, we find that \gam depends non-analytically on the coupling constant ⋙\ggg as ⋙4/3\ggg^{4/3}. In contrast to the ordinary evaluation of \gam which relies on the Fermi golden rule (itself based on perturbation analysis), \gam has an upper bound and does not diverge at \ome_c even if we assume perfect conductance in the waveguide walls. As a result, again in contrast to the statement found in the literature, the speed of emitted light from the molecule does not vanish at \ome_c and is proportional to c⋙2/3c\ggg^{2/3} which is on the order of 103∼10410^3 \sim 10^4 m/s for typical dipole molecules.Comment: 4 pages, 2 figure
    • …
    corecore