research

Strongly Coupled Matter-Field and Non-Analytic Decay Rate of Dipole Molecules in a Waveguide

Abstract

The decay rate \gam of an excited dipole molecule inside a waveguide is evaluated for the strongly coupled matter-field case near a cutoff frequency \ome_c without using perturbation analysis. Due to the singularity in the density of photon states at the cutoff frequency, we find that \gam depends non-analytically on the coupling constant \ggg as 4/3\ggg^{4/3}. In contrast to the ordinary evaluation of \gam which relies on the Fermi golden rule (itself based on perturbation analysis), \gam has an upper bound and does not diverge at \ome_c even if we assume perfect conductance in the waveguide walls. As a result, again in contrast to the statement found in the literature, the speed of emitted light from the molecule does not vanish at \ome_c and is proportional to c2/3c\ggg^{2/3} which is on the order of 10310410^3 \sim 10^4 m/s for typical dipole molecules.Comment: 4 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020