87 research outputs found
Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations
We show that full-image micro-PIV analysis in combination with images of
transient particle motion is a powerful tool for experimental studies of
acoustic radiation forces and acoustic streaming in microfluidic chambers under
piezo-actuation in the MHz range. The measured steady-state motion of both
large 5 um and small 1 um particles can be understood in terms of the acoustic
eigenmodes or standing ultra-sound waves in the given experimental
microsystems. This interpretation is supported by numerical solutions of the
corresponding acoustic wave equation.Comment: RevTex, 10 pages, 9 eps figures; NOTE first authors changed his name
to S. Melker Hagsater in the published versio
Theory of dressed states in quantum optics
The dual Dyson series [M.Frasca, Phys. Rev. A {\bf 58}, 3439 (1998)], is used
to develop a general perturbative method for the study of atom-field
interaction in quantum optics. In fact, both Dyson series and its dual, through
renormalization group methods to remove secular terms from the perturbation
series, give the opportunity of a full study of the solution of the
Schr\"{o}dinger equation in different ranges of the parameters of the given
hamiltonian. In view of recent experiments with strong laser fields, this
approach seems well-suited to give a clarification and an improvement of the
applications of the dressed states as currently done through the eigenstates of
the atom-field interaction, showing that these are just the leading order of
the dual Dyson series when the Hamiltonian is expressed in the interaction
picture. In order to exploit the method at the best, a study is accomplished of
the well-known Jaynes-Cummings model in the rotating wave approximation, whose
exact solution is known, comparing the perturbative solutions obtained by the
Dyson series and its dual with the same approximations obtained by Taylor
expanding the exact solution. Finally, a full perturbative study of high-order
harmonic generation is given obtaining, through analytical expressions, a clear
account of the power spectrum using a two-level model, even if the method can
be successfully applied to a more general model that can account for ionization
too. The analysis shows that to account for the power spectrum it is needed to
go to first order in the perturbative analysis. The spectrum obtained gives a
way to measure experimentally the shift of the energy levels of the atom
interacting with the laser field by looking at the shifting of hyper-Raman
lines.Comment: Revtex, 17 page
Nonlinear level crossing models
We examine the effect of nonlinearity at a level crossing on the probability
for nonadiabatic transitions . By using the Dykhne-Davis-Pechukas formula,
we derive simple analytic estimates for for two types of nonlinear
crossings. In the first type, the nonlinearity in the detuning appears as a
{\it perturbative} correction to the dominant linear time dependence. Then
appreciable deviations from the Landau-Zener probability are found to
appear for large couplings only, when is very small; this explains why the
Landau-Zener model is often seen to provide more accurate results than
expected. In the second type of nonlinearity, called {\it essential}
nonlinearity, the detuning is proportional to an odd power of time. Then the
nonadiabatic probability is qualitatively and quantitatively different from
because on the one hand, it vanishes in an oscillatory manner as the
coupling increases, and on the other, it is much larger than . We
suggest an experimental situation when this deviation can be observed.Comment: 9 pages final postscript file, two-column revtex style, 5 figure
Bose-Einstein Condensates in Optical Lattices: Band-Gap Structure and Solitons
We analyze the existence and stability of spatially extended (Bloch-type) and
localized states of a Bose-Einstein condensate loaded into an optical lattice.
In the framework of the Gross-Pitaevskii equation with a periodic potential, we
study the band-gap structure of the matter-wave spectrum in both the linear and
nonlinear regimes. We demonstrate the existence of families of spatially
localized matter-wave gap solitons, and analyze their stability in different
band gaps, for both repulsive and attractive atomic interactions
Statistical properties of power-law random banded unitary matrices in the delocalization-localization transition regime
Power-law random banded unitary matrices (PRBUM), whose matrix elements decay
in a power-law fashion, were recently proposed to model the critical statistics
of the Floquet eigenstates of periodically driven quantum systems. In this
work, we numerically study in detail the statistical properties of PRBUM
ensembles in the delocalization-localization transition regime. In particular,
implications of the delocalization-localization transition for the fractal
dimension of the eigenvectors, for the distribution function of the eigenvector
components, and for the nearest neighbor spacing statistics of the eigenphases
are examined. On the one hand, our results further indicate that a PRBUM
ensemble can serve as a unitary analog of the power-law random Hermitian matrix
model for Anderson transition. On the other hand, some statistical features
unseen before are found from PRBUM. For example, the dependence of the fractal
dimension of the eigenvectors of PRBUM upon one ensemble parameter displays
features that are quite different from that for the power-law random Hermitian
matrix model. Furthermore, in the time-reversal symmetric case the nearest
neighbor spacing distribution of PRBUM eigenphases is found to obey a
semi-Poisson distribution for a broad range, but display an anomalous level
repulsion in the absence of time-reversal symmetry.Comment: 10 pages + 13 fig
Adiabatic population transfer via multiple intermediate states
This paper discusses a generalization of stimulated Raman adiabatic passage
(STIRAP) in which the single intermediate state is replaced by intermediate
states. Each of these states is connected to the initial state \state{i} with
a coupling proportional to the pump pulse and to the final state \state{f}
with a coupling proportional to the Stokes pulse, thus forming a parallel
multi- system. It is shown that the dark (trapped) state exists only
when the ratio between each pump coupling and the respective Stokes coupling is
the same for all intermediate states. We derive the conditions for existence of
a more general adiabatic-transfer state which includes transient contributions
from the intermediate states but still transfers the population from state
\state{i} to state \state{f} in the adiabatic limit. We present various
numerical examples for success and failure of multi- STIRAP which
illustrate the analytic predictions. Our results suggest that in the general
case of arbitrary couplings, it is most appropriate to tune the pump and Stokes
lasers either just below or just above all intermediate states.Comment: 14 pages, two-column revtex style, 10 figure
Multistate modeling of habitat dynamics: factors affecting Florida scrub transition probabilities
Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida\u27s Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics
Chaos assisted tunnelling with cold atoms
In the context of quantum chaos, both theory and numerical analysis predict
large fluctuations of the tunnelling transition probabilities when irregular
dynamics is present at the classical level. We consider here the
non-dissipative quantum evolution of cold atoms trapped in a time-dependent
modulated periodic potential generated by two laser beams. We give some precise
guidelines for the observation of chaos assisted tunnelling between invariant
phase space structures paired by time-reversal symmetry.Comment: submitted to Phys. Rev. E ; 16 pages, 13 figures; figures of better
quality can be found at http://www.phys.univ-tours.fr/~mouchet
Scattering Theory of Photon-Assisted Electron Transport
The scattering matrix approach to phase-coherent transport is generalized to
nonlinear ac-transport. In photon-assisted electron transport it is often only
the dc-component of the current that is of experimental interest. But
ac-currents at all frequencies exist independently of whether they are measured
or not. We present a theory of photon-assisted electron transport which is
charge and current conserving for all Fourier components of the current. We
find that the photo-current can be considered as an up- and down-conversion of
the harmonic potentials associated with the displacement currents. As an
example explicit calculations are presented for a resonant double barrier
coupled to two reservoirs and capacitively coupled to a gate. Two experimental
situations are considered: in the first case the ac-field is applied via a
gate, and in the second case one of the contact potentials is modulated. For
the first case we show that the relative weight of the conduction sidebands
varies with the screening properties of the system. In contrast to the
non-interacting case the relative weights are not determined by Bessel
functions. Moreover, interactions can give rise to an asymmetry between
absorption and emission peaks. In the contact driven case, the theory predicts
a zero-bias current proportional to the asymmetry of the double barrier. This
is in contrast to the discussion of Tien and Gordon which, in violation of
basic symmetry principles, predicts a zero-bias current also for a symmetric
double barrier.Comment: 15 pages, 6 figures, REVTE
Location of crossings in the Floquet spectrum of a driven two-level system
Calculation of the Floquet quasi-energies of a system driven by a
time-periodic field is an efficient way to understand its dynamics. In
particular, the phenomenon of dynamical localization can be related to the
presence of close approaches between quasi-energies (either crossings or
avoided crossings). We consider here a driven two-level system, and study how
the locations of crossings in the quasi-energy spectrum alter as the field
parameters are changed. A perturbational scheme provides a direct connection
between the form of the driving field and the quasi-energies which is exact in
the limit of high frequencies. We firstly obtain relations for the
quasi-energies for some common types of applied field in the high-frequency
limit. We then show how the locations of the crossings drift as the frequency
is reduced, and find a simple empirical formula which describes this drift
extremely well in general, and appears to be exact for the specific case of
square-wave driving.Comment: 6 pages, 6 figures. Minor changes to text, this version to be
published in Physical Review
- …