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Multistate modeling of habitat dynamics:
factors affecting Florida scrub transition probabilities

DAVID R. BREININGER,1,2,4 JAMES D. NICHOLS,3 BREAN W. DUNCAN,1,2 ERIC D. STOLEN,1 GEOFFREY M. CARTER,1

DANNY K. HUNT,1 AND JOHN H. DRESE
1

1Innovative Health Applications, IHA-300, Kennedy Space Center, Florida 32899 USA
2Department of Biology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816 USA

3United States Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland 20708 USA

Abstract. Many ecosystems are influenced by disturbances that create specific succes-
sional states and habitat structures that species need to persist. Estimating transition
probabilities between habitat states and modeling the factors that influence such transitions
have many applications for investigating and managing disturbance-prone ecosystems. We
identify the correspondence between multistate capture–recapture models and Markov models
of habitat dynamics. We exploit this correspondence by fitting and comparing competing
models of different ecological covariates affecting habitat transition probabilities in Florida
scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a
large scrub and flatwoods ecosystem along central Florida’s Atlantic coast into 10-ha grid
cells, which approximated average territory size of the threatened Florida Scrub-Jay
(Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial
imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were
directly related to Florida Scrub-Jay source–sink dynamics and management decision making.
Results showed that static site features related to fire propagation (vegetation type, edges) and
temporally varying disturbances (fires, mechanical cutting) best explained transition
probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant
to moving from a degraded state to a desired state without mechanical cutting, an expensive
restoration tool. We used habitat models parameterized with the estimated transition
probabilities to investigate the consequences of alternative management scenarios on future
habitat dynamics. We recommend this multistate modeling approach as being broadly
applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides
maximum-likelihood estimates of transition parameters, including precision measures, and can
be used to assess evidence among competing ecological models that describe system dynamics.

Key words: Aphelocoma coerulescens; capture–recapture; disturbance; fire; Florida Scrub-Jay;
Kennedy Space Center/Merritt Island National Wildlife Refuge, Florida, USA; land cover; multistate
models; patch dynamics; restoration; scrub.

INTRODUCTION

Land cover, vegetation, and habitat are frequently

viewed as primary determinants of both the distribution

(e.g., Scott et al. 1993) and abundance (e.g., Van Horne

1983) of animal populations. Analyses relating habitat

covariates to animal occurrence retain a prominent place

in ecological and conservation literature (Scott et al.

2002). Traditionally, it has been common to view

landscape features and animal populations as static

entities, but many other questions focus instead on

dynamics, including climate change, ecological succes-

sion, and habitat management (Hodgson et al. 2009).

Successional dynamics are important determinants of

the dynamics and persistence of animal populations

inhabiting such habitats (Thomas 1994, Amarasekare

and Possingham 2001, Ellner and Fussmann 2003).

Managing animal populations and communities associ-

ated with transitional habitats (habitats that do not

represent endpoints of succession, or climax) requires

efforts to mimic natural disturbance regimes to retain

habitats in transitional stages (Breininger et al. 2009).

A variety of approaches have been used to model

habitat dynamics (Baker 1989). Markov models provide

a useful framework for modeling dynamics in cases in

which relevant landscape and habitat features can be

adequately characterized by discrete stages or states

(e.g., Waggoner and Stephens 1970, Usher 1979, Call-

away and Davis 1993). In such models, the state of the

system at one point in time is written as a function of the

state of the system at a previous time, together with a set

of state transition probabilities representing the different

possible types of habitat change.

The key inferential step in the use of Markov models

is estimation of the transition probabilities that govern

change. In some cases, values for transition probabilities
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have been based on expert opinion (Fonnesbeck 2006).

In other cases, output from more detailed models of

dynamic processes (e.g., regeneration and mortality of

individual trees) occurring within sites can be aggregated

to draw inferences about the ‘‘state changes’’ of the sites

(e.g., Acevedo et al. 1996).

In many cases, transition probabilities can be

estimated from data comprised of states recorded at

the same sites for multiple time periods. There are

multiple ways to estimate transition probabilities from

such data, but many are based on closed-form estima-

tors that focus on one state transition at a time or on

multiple transitions from one state to other states (e.g.,

Augustin et al. 2001, Yemshanov and Perera 2003,

Rutherford et al. 2007). An efficient, alternative

approach is to use maximum-likelihood methods to

model the entire set of site history data, where the data

reflect the state of each site at each time period of

observation. Such models are parameterized using

transition probabilities that can themselves be modeled

as constants, time varying, or functions of ecological

covariates.

We develop this approach for estimating habitat

transition probabilities as a special case of multistate

capture–recapture models that have been used to

address many questions regarding ecology and evolution

(Nichols et al. 1994, Nichols and Kendall 1995,

Lebreton et al. 2009). We show the relationship between

multistate capture–recapture models and Markov mod-

els of transition probabilities for habitat dynamics using

software that facilitates modeling the effects of covar-

iates on the spatial and/or temporal variation in

transition probabilities (White and Burnham 1999,

White et al. 2006). This approach uses competing

ecological models in a likelihood framework permitting

model selection, model averaging, and related approach-

es to multimodel inference (Buckland et al. 1997,

Burnham and Anderson 2002).

We apply multistate models to the dynamics of

Florida scrub and flatwoods habitat to estimate habitat

transition probabilities and test predictions about

factors that influence transitions, including disturbances,

management actions (i.e., fire and mechanical cutting),

and landscape characteristics (vegetation, edge). We will

also use these transition probability estimates to explore

the range of relative abundances of habitat states in the

future under several management scenarios. The four

habitat states we use in this modeling directly influence

recruitment, survival, and source–sink dynamics of

Florida Scrub-Jay (Aphelocoma coerulescens) popula-

tions (Breininger and Carter 2003, Breininger and Oddy

2004; see Plate 1). In addition to being of interest as a

threatened species under the Endangered Species Act,

the Florida Scrub-Jay is an indicator and flagship

species of scrub habitat (Noss et al. 1997). Scrub and

flatwoods have been greatly degraded by anthropogenic

reductions in natural fire frequency, and restoring and

managing them are important to conserving many

unique plant and animal populations (Quintana-Ascen-

cio and Menges 1996, Duncan et al. 1999, Duncan and

Schmalzer 2004, Breininger et al. 2006, Menges et al.

2008).

BACKGROUND AND HYPOTHESES

Modeling habitat dynamics

We modeled habitat dynamics at the scale of 10-ha

grid cells that represented average Florida Scrub-Jay

territories in a landscape (Breininger et al. 2006).

Habitat states included short, optimal, tall mixed, and

tall, denoted as, respectively, Sh, Op, Tm, and Ta. The

Op state has Florida Scrub-Jay recruitment that exceeds

mortality and is a mix of short and medium-height oaks,

which provides optimal acorn production, nesting cover,

and predator escape cover. Other states have mortality

that exceeds recruitment because they are either too

short or have too much tall, dense scrub (Breininger et

al. 2009).

Markov models of habitat dynamics are similar to

projection models for population dynamics (e.g., Cas-

well 2001) and Markov models for occupancy dynamics

of metapopulations (e.g., Martin et al. 2009a). For a

system of sites, define a vector as the number of sites in

each of the four possible habitat states (nSh
t , nOp

t , nTm
t ,

nTa
t ) at a given time period, t. Transition probabilities

(wrs
t ) are defined as the probability that a site in state r at

time t is in state s at time tþ 1. A projection model for

habitat dynamics can then be written as

nSh
tþ1

nOp
tþ1

nTm
tþ1

nTa
tþ1

2
666664

3
777775
¼

wShSh
t wOpSh

t wTmSh
t wTaSh

t

wShOp
t wOpOp

t wTmOp
t wTaOp

t

wShTm
t wOpTm

t wTmTm
t wTaTm

t

wShTa
t wOpTa

t wTmTa
t wTaTa

t

2
666664

3
777775

nSh
t

nOp
t

nTm
t

nTa
t

2
666664

3
777775

or, in matrix notation, as

ntþ1 ¼ Wtnt:

Thus, we can project the number of sites in each habitat

state in one period as a function of the number of sites in

each state the previous period and the transition matrix

defining the state dynamics. Just as the study of

population dynamics focuses on the vital rates (rates

of birth, death, and migration) that define such

dynamics, the study of habitat dynamics should focus

on the transition probabilities wrs
t that constitute the

vital rates of these dynamics (Boughton and Malvadkar

2002).

Factors influencing habitat dynamics

Ecological hypotheses about factors influencing hab-

itat dynamics were investigated by modeling transition

probabilities as functions of single factors or certain

combinations of factors (Appendix A). One simple

model stated that transitions between habitat states

were dependent only on the presence/absence of fire

during the interval between transitions because changes
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in habitat structure occur when fires kill most above-

ground stems and leaves of dominant plants (Schmalzer

and Hinkle 1992). Another simple model includes not

only fire, but also the presence/absence of mechanical

cutting (‘‘cutting’’) to enhance fire spread, because

habitat that has been degraded by long periods of

reduced fire frequency burns poorly (Schmalzer and

Boyle 1998). Other factors that influence fire spread, and

therefore might influence transition probabilities, in-

clude vegetation composition (oak), edge effects (edge),

and presence/absence of fire in previous time steps

(history). Oak is an important factor because of its

presence as a dominant plant cover (�50% canopy

cover) that distinguishes scrub from flatwoods (Brei-

ninger et al. 2002). Edges disrupt fire propagation across

landscapes (Duncan et al. 1999) and may be useful for

describing variation in transition probabilities. We

defined edges as scrub or flatwoods that were adjacent

to forest, human-dominated land cover types, or water

bodies.

METHODS

Study areas

We studied areas managed with controlled fires at

Kennedy Space Center/Merritt Island National Wildlife

Refuge located along central Florida’s Atlantic coast

(Breininger and Carter 2003). Scrub occurs on relict

dunes and is dominated by less flammable scrub oaks

(Quercus myrtifolia, Q. geminata) that are among

flammable flatwoods vegetation, such as palmetto

(Serenoa repens), shiny lyonia (Lyonia lucida), and

wiregrass (Aristida stricta; Breininger et al. 2002).

Recently burned scrub and flatwoods have an open tree

canopy of slash pine (Pinus elliotii ). The pines are

resilient to most fires, and grasses and shrubs sprout

rapidly after fire so that plant species composition

changes little in frequently burned areas (Schmalzer and

Hinkle 1992). The contemporary fire regime fire cycle

(time required to burn an area equivalent to the entire

study area) is 14 years (Duncan et al. 2009), but the fire

return interval can be as often as 3–5 years in some areas

(Breininger et al. 2002).

Anthropogenic land cover alterations began reducing

fire frequency 50 years ago (Duncan and Schmalzer

2004). From 1960 to 1980 the study site went through a

period during which controlled fires did not occur and

wild fires were extinguished. These reductions in burning

caused much scrub, flatwoods, and interspersed marshes

to transition into forest, which were once rare but are

now common (Duncan et al. 1999, 2004). Forests burn

poorly and cause fire shadows in scrub and flatwoods

downwind (Breininger et al. 2002). Since 1980, con-

trolled fires have been used by the U.S. Fish and Wildlife

Service to manage fuels and wildlife habitat; natural fires

must generally be suppressed. Fire history data suggest

that natural fires were usually frequent and small,

having burned under wetter meteorological conditions

(i.e., lightning storms) than controlled fire regimes

(Duncan 2009).

Data collection

The habitat quality state of 10-ha grid cells was

classified using 1.0-m resolution digital orthophoto

quads available in 1994, 1999, and 2004 (Breininger et

al. 2006, 2009, Carter et al. 2006). For each of the three

sampled years, we classified every grid cell (n¼ 924) into

one of four habitat states. The short state (Sh) was

identified by grid cells being burned completely within

three years, having open sand visible between individual

oak shrubs and no patches of medium-height oaks (1.2–

1.7 m tall) larger than 0.4 ha. The optimal state (Op) had

an abundance of open sandy areas among medium-

height patches of oak scrub that were .0.4 ha in size,

but no patches of tall oaks (.1.7 m) larger than 0.4 ha.

Medium-height patches were usually 3–20 years postfire

and lacked open sandy areas and had interlocking shrub

canopies and a smooth texture (Paine 1981) on 1.0-m

resolution aerial photography. Smooth texture contrast-

ed with the shadows and tones that create a rough

texture for tall oaks on 1.0-m resolution aerial

photography. The tall mixed state (Tm) had short or

medium-height scrub patches among patches of tall oaks

.0.4 ha in size. Tall oaks had rough texture on 1.0-m

resolution aerial photography and were usually .15

years postfire. The tall state (Ta) lacked short and

medium-height oaks and usually lacked open sand,

except along man-made clearings.

We assigned habitat states for 1994, 1999, and 2004 as

a row vector of habitat states for each 10-ha cell. For

example, the habitat history for cell j can be written as hj
¼ (Sh Op Op), indicating a site that was in short habitat

in 1994 and optimal habitat in 1999 and 2004. The data

set consisted of such habitat histories for each of the 924

cells. We assumed perfect classification at each period

for our analysis and discuss our rationale and approach-

es to deal with nonnegligible state misclassification in

Appendix B.

We used vectors of static (not time-varying) and

dynamic (period-specific) covariates predicted to influ-

ence transition probabilities in the habitat history of

each cell. The static covariate ‘‘oak’’ distinguished grid

cells that intersected well-drained oak scrub from those

that only occurred on poorly drained flatwoods soils

using Brevard County soils maps (Breininger et al.

1991). The covariate ‘‘fire’’ distinguished whether grid

cells burned and was specific to each cell for each time

period. Fire during the interval t to t þ 1 was used to

model the transition probability over the same period,

wrs
t . The covariate ‘‘cutting’’ distinguished grid cells that

had been subject to mechanical cutting of trees and

shrubs (Schmalzer and Boyle 1998). This was also a

dynamic covariate, with cutting during the interval (t, tþ
1) potentially influencing wrs

t . The covariate ‘‘history’’

identified whether the grid cell burned during the prior

five-year interval. History was also a dynamic covariate,

DAVID R. BREININGER ET AL.3356 Ecology, Vol. 91, No. 11



but in this case fire history during t � 1 to t potentially

affected wrs
t . Burning was determined using habitat

management records and remote sensing and was based

on whether at least one-quarter of the grid cell was
burned or cut (Shao and Duncan 2007, Duncan et al.

2009). The static covariate ‘‘edge’’ distinguished grid

cells that intersected human landcover types (e.g.,

roads), open water, and forests from interior grid cells.

Multistate habitat modeling

We used the site-specific habitat states and corre-

sponding covariates for each of the 924 10-ha grid cells,

for each of three years, 1994, 1999, and 2004, as data to

develop habitat models. The first decision in modeling
the data was about the relevant timescale. As the data

were from three years spaced at five-year intervals, it was

natural to estimate five-year transition probabilities

corresponding to the interval between samples. We used

this approach in this paper, although we show in
Appendix B how to draw inferences about mean annual

transition probabilities by modeling detection parame-

ters differently. This latter approach can also be

modified to model data when state assignment for some

cells occurs at different periods than for other cells.

Inferences about habitat dynamics were based on

modeling the interval-specific transition parameters, wrs
t .

For all sites in each possible state r at time t, the

probability that the site would be in any of the four

states (s) at time t þ 1 followed a multinomial

distribution (see also Augustin et al. 2001). Because

our data on habitat states of sites were available for
three specific years, our inferences about time specificity

of transition probabilities were limited. We estimated

five-year transition probabilities for the first five-year

period (1994–1999; denoted as wrs
94) and the second five-

year period (1999–2004; denoted as wrs
99) for all habitat

states. The resulting estimated transition probabilities

can be combined into transition matrices and used to

project habitat change following: n99¼W94 n94, n04¼W99

n99.

Comparing models of habitat transition probabilities.—

We used program MARK (version 5.1; White and

Burnham 1999) to compute maximum-likelihood esti-
mates of the transition probabilities and the parameters

associated with covariate relationships.

In addition to providing estimates of habitat state

transition probabilities, our modeling approach permits

inference about covariates that might influence these

probabilities. For example, if xtj indicates a covariate
associated with time period t and site j, then we can

model the corresponding transition probabilities as

wrs
tj ¼

eðb0þb1xtjÞ

1þ eðb0þb1xtjÞ

where b0 (intercept) and b1 are parameters of the model

and are estimated directly. The b1 parameters pertain to

the nature and strength of the relationship between
transition probabilities and the covariate, xtj. Although

we tended to use the above type of linear-logistic model,

we could have used multinomial logit models as well.

(See also Augustin et al. [2001] for a discussion of these

two approaches.) Because

X
s

wrs
t ¼ 1

we always obtained one of the transition probability

estimates by subtraction, specifically

ŵ
rr

t ¼ 1�
X
s 6¼r

ŵ
rs

t :

To avoid numerical estimation problems, we con-

strained transition parameters to 0.0 when the specific

transitions did not occur in the data (wShTa, wOpTa,

wTaOp), and we limited the number of covariates for

particular transitions where data were sparse. We

included all possible covariates (i.e., the most general

models) only for wTmSh and wTmOp, because only these

transitions had abundant data across all covariate values

(Fig. 1). We only included the covariate oak and no

other covariates for wShTm, wOpTm, wTmTa, wTaSh, and

wTaTm because these transitions were rare, and there

were many samples for both oak categories because this

covariate identified the two types of plant communities.

FIG. 1. Transitions and associated probabilities estimated
by multistate modeling of scrub and flatwoods at the Kennedy
Space Center, Florida, USA, 1994–2004. The superscripts refer
to short, optimal, tall mixed, and tall states denoted as,
respectively, Sh, Op, Tm, and Ta. Transitions depicted by heavy
solid lines had adequate sample sizes for models including all
covariates. Transitions depicted by thin solid lines occurred
infrequently and were modeled using fewer covariates. Transi-
tions with dotted lines had few occurrences and were modeled
using only the covariate oak. Transitions from short to tall,
optimal to tall, and tall to optimal habitat states for Florida
Scrub-Jays never occurred and were constrained to zero to aid
numerical estimation. Transition probabilities for states that
remained the same were estimated by subtraction.
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For wShOp and wOpSh, we excluded covariates if there

were three or fewer cases of a transition for each

covariate condition. We also excluded fire for the wOpSh

transitions, because there were no occurrences of this

transition when Op did not burn.

The Nagelkerke R2 provides a close analog to a

regression multiple R2 for any model for which the

maximum likelihood can be calculated (Nagelkerke 1991,

Anderson 2008). We calculated Nagelkerke R2 to assess

the explanatory power for the best-supported model (that

with the lowest corrected Akaike information criterion

[AICc]) using a time constant model having state-specific

transitions with no ecological covariates as the null.

How ecological covariates influence transition proba-

bilities.—Based on previous Florida Scrub-Jay habitat

studies, we developed a priori predictions about how

each ecological covariate, described in Background and

hypotheses above, influenced each transition probability.

We stated these a priori predictions by specifying

whether coefficients representing each ecological covar-

iate would increase or decrease each transition proba-

bility (i.e., we predicted whether the b coefficients would

be positive or negative; Table 1).

Projecting future habitat dynamics.—We projected

habitat dynamics for 35 years to predict the proportion

of potential territories (grid cells) in a source (optimal)

vs. sink (short, tall mixed, tall) state. We projected these

dynamics separately for scrub and flatwoods using three

alternative approaches to management: infrequent fire,

frequent fire, and frequent fire and cutting. We started

TABLE 1. Comparing the b̂j of the best multistate habitat transition model (oak 3 fire þ oak 3 cutting þ edge) with a priori
predictions for the Kennedy Space Center, Florida, USA, 1994–2004.

bj description w b̂j Lower CL Upper CL
A priori
prediction Explanations

Flatwoods not scrub wShOp 0.32 �1.04 1.69 � disagreement; perhaps flatwoods grew faster
than scrub

Flatwoods not scrub wShTm �0.37 �2.35 1.62 � agreement; flatwoods were more likely to
burn before getting tall compared to scrub

Fire vs. no fire in scrub wShOp �0.45 �1.71 0.81 � agreement; scrub that burned was less likely
to increase in height

Fire vs. no fire in
flatwoods

wShOp �1.95 �2.91 �0.98 � agreement; flatwoods that burned were
less likely to increase in height

Edge vs. no edge wShOp 1.16 0.44 1.88 þ agreement; edges had less extensive fire
Flatwoods not scrub wOpSh 0.68 0.02 1.35 þ agreement; flatwoods burned more

extensively than scrub
Flatwoods not scrub wOpTm 1.12 0.28 1.97 þ agreement; flatwoods grew faster than

scrub
Edge vs. no edge wOpSh �0.33 �0.98 0.33 � agreement; edges burned less completely
Flatwoods not scrub wTmSh 0.73 �1.50 2.95 þ agreement; flatwoods burned more

extensively than scrub
Fire vs. no fire in scrub wTmSh 2.44 0.42 4.46 þ agreement; areas that burned were more

likely to become shorter
Fire vs. no fire in

flatwoods
wTmSh 1.09 0.01 2.18 þ agreement; areas that burned were more

likely to become shorter
Cutting vs. no cutting in

scrub
wTmSh 0.66 0.07 1.25 þ agreement; cut areas were more likely

to become shorter
Cutting vs. no cutting in

flatwoods
wTmSh 2.39 1.80 2.97 þ agreement; cut areas were more likely

to become shorter
Edge vs. no edge wTmSh �2.07 �2.56 �1.58 � agreement; edges burned poorly
Flatwoods not scrub wTmOp 0.86 �1.30 3.03 þ agreement; flatwoods burned more

extensively than scrub
Fire vs. no fire in scrub wTmOp 2.16 0.15 4.17 þ agreement; areas that burned were more

likely to become shorter
Fire vs. no fire in

flatwoods
wTmOp 0.10 �0.95 1.15 þ agreement; areas that burned were more

likely to become shorter
Cutting vs. no cutting in

scrub
wTmOp 0.83 0.23 1.43 þ agreement; cut areas were more likely to

become shorter
Cutting vs. no cutting in

flatwoods
wTmOp 1.11 0.16 2.06 þ agreement; cut areas were more likely to

become shorter
Edge vs. no edge wTmOp �0.86 �1.49 �0.23 � agreement; edges burned less extensively
Flatwoods not scrub wTmTa 1.14 �0.39 2.68 þ agreement; flatwoods grew faster
Flatwoods not scrub wTaSh �0.15 �2.94 2.64 � agreement; flatwoods burned more

extensively
Flatwoods not scrub wTaTm 0.84 0.08 1.60 þ agreement; flatwoods burned more

extensively

Notes: b̂j is the estimated slope parameter of the linear-logistic relationship between the specified habitat covariate and transition
probability. The superscripts refer to short, optimal, tall mixed, and tall states denoted as, respectively, Sh, Op, Tm, and Ta.
Individual bj represent covariates (e.g., edge) specific to particular transitions. Fire and cutting bj were specific to either scrub or
flatwoods where subscripts were identified (i.e., fire 3 oak; cutting 3 oak). Oak covariate coding: 1, flatwoods; 0, scrub. A minus
sign indicates a predicted negative bj, and a plus sign indicates a predicted positive bj.
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each projection with a landscape of 1000 grid cells

characterized by the same relative abundances of habitat

states as found in 2004. We specified the time frame of

each projection as the number of five-year intervals

(denoted as m) into the future. Using 2004 as a basis, the

expression used to project dynamics is modified to deal

with time intervals .1 as n04þ5m ¼Wm
t n04.

We projected dynamics for: (1) infrequently burned

scrub, (2) frequently burned scrub, (3) frequently

burned and mechanically cut scrub, (4) infrequently

burned flatwoods, (5) frequently burned flatwoods,

and (6) frequently burned and cut flatwoods. The six

matrices for transitions associated with different

treatments are provided in Appendix C and were

based on transition probabilities from the best (low-

AICc) model for transition probabilities. The fre-

quently burned scenario referred to at least one

controlled fire during each five-year interval. The

burned and cut scenario referred to mechanical cutting

and one fire during each five-year interval. The

infrequently burned scenario involved sampling tran-

sition probabilities from burned grid cells with a

probability of 0.333 and unburned grid cells with a

probability of 0.666. We used random sampling

instead of alternating burned and unburned treat-

ments because fire intervals varied greatly among sites

in this system (Duncan et al. 2009) and such irregular

frequencies are recommended over regular fire inter-

vals (Menges 2007). The infrequently burned scenario

simulates a fire regime typically recommended for

mixtures of scrub and flatwoods, which has been

predicted to be inadequate for restoring degraded

habitat (Breininger et al. 2002).

If m becomes sufficiently large in the above projec-

tions the landscape expressing the number of sites in

each habitat class (n04þ5m) stabilizes and becomes a

constant, analogous to a stable age distribution in

population projection (Caswell 2001). We projected for

seven steps because we were interested in projections

into the near future (seven steps) and not asymptotic

values because habitat management practices do not

remain constant for long.

RESULTS

Comparing models of habitat transition probabilities.—

Oak, edge, fire, and cutting, but not fire history, were in

the model that received virtually all support (AICc

weight [w] ; 1.00; Appendix A). This ‘‘best model’’

specified the interactions oak 3 fire and oak 3 cutting,

indicating that the effects of fire and cutting differed

between scrub and flatwoods vegetative communities.

Hereafter, all inferences about transition probability

parameters were derived from this model. The Nagel-

kerke R2 value of this model was 0.39 and provides an

estimate of variation explained by the best model,

relative to that explained by the null model that

excluded all ecological covariates (oak, fire, edge, oak

3 fire, oak 3 cutting).

How ecological covariates influence transition proba-

bilities.—We used Table 1 to compare our a priori

PLATE 1. Two pairs of Florida Scrub-Jays aligned along their territory boundary in optimal scrub at Tel-4, Kennedy Space
Center/Merritt Island National Wildlife Refuge, Florida, USA. We classified habitat state at the territory scale, which was the
geographic unit directly related to recruitment and survival. Using controlled fires and mechanical cutting, management strives to
attain most potential territories (grid cells) in source state (recruirment exceeds mortality; optimal) than sink states (mortality
exceeds recruitment; short, tall mix, tall). Photo credit: D. R. Breininger.
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predictions of whether ecological covariates would have

a positive vs. negative effect on transition probabilities

with the signs of the actual coefficients (b̂ j) specified in

the best model. The signs of all b̂j were consistent with a

priori predictions for all ecological covariates except

ShOp, which had a CI that overlapped zero. Tall and tall

mixed grid cells often remained within the same state, in

contrast to short and optimal grid cells, which com-

monly transitioned between one another (i.e.,wShOp and

wOpSh; Table 2). Fire had a greater influence on wShOp,

wOpSh, and wOpTm in the more flammable flatwoods than

in oak scrub (Table 2). In oak scrub, fire had a much

greater influence on wTmSh and wTmOp than in flatwoods.

Cutting increased wTmSh and wTmOp for both oak scrub

and flatwoods.

Projecting future habitat dynamics.—Projected habitat

states changed little in scrub and flatwoods burned

infrequently (Fig. 2). The influence of fire without

mechanical cutting in scrub produced greater change

compared to flatwoods, where mechanical cutting

resulted in a much greater increase in the short state

(Sh) relative to scrub.

DISCUSSION

Multistate modeling of habitat state transitions

provided estimates of transition probabilities, associated

measures of precision, and an objective approach for

discriminating among alternative hypotheses that spec-

ified the influences of ecological covariates. Static site

features (i.e., presence of oak and edge) and manage-

ment activities (i.e., fires and cutting) had important

influences on habitat transition probabilities. The

influences of static site features and management have

also been found to be important in other ecosystems

TABLE 2. Estimated transition probabilities for burned, unburned, and cut scrub and flatwoods at
the Kennedy Space Center, Florida, USA, 1994–2004, based on the top model (oak3 fireþ oak
3 cuttingþ edge).

Label Estimate Lower CL Upper CL Groups

wShSh 0.45 0.29 0.61 burned scrub
wShSh 0.34 0.07 0.61 unburned scrub
wShSh 0.73 0.61 0.85 burned flatwoods
wShSh 0.28 0.12 0.44 unburned flatwoods
wShOp 0.52 0.36 0.67 burned scrub
wShOp 0.63 0.34 0.85 unburned scrub
wShOp 0.25 0.16 0.37 burned flatwoods
wShOp 0.70 0.51 0.84 unburned flatwoods
wShTm 0.03 0.01 0.11 scrub
wShTm 0.02 0.01 0.08 flatwoods
wOpSh 0.11 0.07 0.18 scrub
wOpSh 0.20 0.13 0.30 flatwoods
wOpOp 0.83 0.77 0.89 scrub
wOpOp 0.63 0.53 0.73 flatwoods
wOpTm 0.06 0.03 0.11 scrub
wOpTm 0.17 0.11 0.25 flatwoods
wTmSh 0.11 0.08 0.15 scrub burned but not cut
wTmSh 0.01 0.00 0.07 scrub not burned or cut
wTmSh 0.19 0.13 0.27 scrub cut and burned
wTmSh 0.06 0.04 0.09 flatwoods burned but not cut
wTmSh 0.02 0.01 0.06 flatwoods not burned or cut
wTmSh 0.41 0.32 0.52 flatwoods cut and burned
wTmOp 0.09 0.07 0.13 scrub burned but not cut
wTmOp 0.01 0.00 0.08 scrub not burned or cut
wTmOp 0.19 0.13 0.27 scrub cut and burned
wTmOp 0.03 0.02 0.05 flatwoods burned but not cut
wTmOp 0.03 0.01 0.06 flatwoods not burned or cut
wTmOp 0.09 0.04 0.17 flatwoods cut and burned
wTmTm 0.79 0.75 0.83 scrub burned but not cut
wTmTm 0.97 0.93 1.01 scrub not burned or cut
wTmTm 0.62 0.54 0.70 scrub cut and burned
wTmTm 0.90 0.88 0.92 flatwoods burned but not cut
wTmTm 0.94 0.90 0.98 flatwoods not burned or cut
wTmTm 0.49 0.39 0.59 flatwoods cut and burned
wTmTa 0.00 0.00 0.02 scrub
wTmTa 0.01 0.01 0.02 flatwoods
wTaSh 0.01 0.00 0.10 scrub
wTaSh 0.01 0.00 0.08 flatwoods
wTaTm 0.19 0.11 0.30 scrub
wTaTm 0.35 0.25 0.46 flatwoods
wTaTa 0.80 0.70 0.90 scrub
wTaTa 0.64 0.54 0.74 flatwoods

Note: The superscripts refer to short, optimal, tall mixed, and tall states denoted as, respectively,
Sh, Op, Tm, and Ta.
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(McClanahan et al. 2002, Henkin et al. 2007, Wondzell

et al. 2007). Our results were similar to those of Pueyo

and Begueria (2007) in Spain, where large differences in

transitions occurred across short distances because of

site features. In our study, differences were the result of

transition probabilities that varied by oak and edge,

causing effects of management actions to be influenced

by local site features.

The covariate oak was consistently one of the most

important ecological factors in predicting transition

probabilities. Oak described vegetation differences

associated with soils and topography and not human

landscape influences. Results supported our a priori

predictions that flatwoods would be more dynamic (i.e.,

have larger transition probabilities from one state to

another) than scrub. We predicted this because flat-

woods vegetation was more flammable and had shrubs

that grew faster after fire, due to the water table being

closer to the surface compared to scrub (Schmalzer and

Hinkle 1992, Breininger et al. 2002). The covariates fire

and cutting were management actions best modeled as

interactions with the covariate oak, because the magni-

tudes of their effects varied depending on whether grid

cells were scrub or flatwoods.

Results supported our a priori predictions that edges

had a negative effect on transitions to a shorter state

(wOpSh, wTmSh, and wTmOp) and a positive effect on

transitions to a taller state (wShOp), because edges

reduced fire spread and frequency. Edge effects in our

study system differed from effects in grasslands and

tropical forest, where edges increase fire spread due to

human-caused fires (Knick and Rotenberry 1997,

Laurance 2003). Most edges in our system resulted from

direct habitat fragmentation (e.g., roads) or indirect

fragmentation effects. Indirect fragmentation effects

occurred when scrub, flatwoods, and marshes transi-

FIG. 2. Projection of management actions across time using transition matrices estimated using multistate models with data
from scrub and flatwoods at the Kennedy Space Center, Florida, USA, for 1994, 1999, and 2004. The regularly burned scenario
refers to a management regime that includes at least one controlled fire in every five-year interval in contrast to an infrequently
burned scenario that includes a controlled fire occurring with a probability of 0.333 for each five-year interval. The cut and burned
scenario refers to mechanical cutting of tall scrub and at least one controlled fire during every five-year interval.
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tioned to forests 20–40 years prior to the study during a

management period when all fires were suppressed

(Duncan and Schmalzer 2004, Duncan et al. 2004). If

our study had included the longer period when scrub or

flatwoods transitioned to forests, we could have treated

forests as an absorbing state and estimated the transition

of scrub and flatwoods to forest (Appendix B).

Resiliency is generally a desirable characteristic for

functional natural ecosystems (Pascual and Guichard

2005), but not for degraded aquatic systems resilient to

restoration (Carpenter and Lathrop 2008). Tall mixed

and tall habitat were resilient to becoming optimal, and

there may be many other examples among terrestrial

systems subject to anthropogenic fire regime shifts that

are difficult to restore (Parisien and Moritz 2009). One

possible reason why fire history was not in the best

model was that we only modeled its effects for wTmSh

and wTmOp due to limited data. As our data increases

with time and we have more wShOp data, we can test

whether fire history covariates influence wShOp because

frequent fires should deplete underground biomass

slowing oak growth.

Without mechanical cutting, habitat quality projec-

tions into the next 15 years predicted that most potential

territories were likely to remain in states where Florida

Scrub-Jay mortality exceeded recruitment (short, tall

mixed, tall; Breininger and Carter 2003, Breininger and

Oddy 2004), which is a serious concern for the small,

isolated populations that comprise most of the species’

range (Stith et al. 1996, Breininger et al. 1999, 2006).

Long-term data on Florida Scrub-Jay populations

suggest that populations will not persist on lands

managed by infrequent fire if the habitat is already in

a degraded state (Breininger and Carter 2003). Reports

of management progress usually specify acreages burned

or cut and provide little to no information on shrub

heights at the territory scale or other measures directly

related to Florida Scrub-Jay recruitment and mortality.

Relevant information on likely management effective-

ness was provided by our multistate projections of

potential territories (grid cells), which approximated the

geographic units at which population recruitment and

mortality processes operated.

Burning at least once every five years predicted greater

increases in habitat quality in scrub, but not flatwoods,

compared to infrequent burning. Long-term data

suggest that Florida Scrub-Jay populations persist under

frequent fire regimes if the fires are not too extensive and

if habitat is not already in a degraded state (Breininger

and Oddy 2004). Degraded flatwoods often can only be

restored by mechanical cutting once trees become tall

enough to be resilient to fire (Duncan et al. 1999).

Differences in restoration success using fire alone may

have occurred because scrub was dominated by oaks

that were usually top-killed by fires, whereas flatwoods

were dominated by saw palmetto, whose aboveground

rhizomes were not top-killed by fire.

Our transition probability estimates can be used with

dynamic optimal control methods to develop optimal

management recommendations (Nichols and Williams

2006, McCarthy and Possingham 2007, Martin et al.

2009b). For example, it is likely that state-specific

management, in which decisions about fire and/or

cutting are based on Florida Scrub-Jay population and

habitat states, will yield outcomes that are superior to

those expected based on reliance on regular fire return

intervals (F. A. Johnson et al., unpublished manuscript).

Management decision making should not only use

habitat quality predictions, but should also use Florida

Scrub-Jay population abundance and population pro-

jections because extensive fires produce many short

territories that have especially poor Florida Scrub-Jay

survival (Breininger et al. 2009).

There is increased interest in focusing on ecosystem

resilience, perturbations, and transient dynamics, but

these methods often rely on eigenvalues of the system at

equilibrium (Neubert and Caswell 1997, Caswell 2007).

Multistate models can not only be used to explicitly test

hypotheses about stationarity and stability (e.g., MacK-

enzie et al. 2003; Appendix B), but they also directly

estimate parameters associated with state changes

during dynamic periods, such as those that occurred in

this study. Multistate models permit direct investigation

of underlying processes (Tucker and Anand 2005,

Newman et al. 2006, Conn and Cooch 2009) and can

accommodate longitudinal data relevant to shifting

mosaics, interactions among environmental variables,

disturbances, climate oscillations, and climate change

(e.g., Callaway and Davis 1993, Scheffer and Carpenter

2003, Van Ness and Scheffer 2005, Whited et al. 2007,

Tam and Ang 2008). Multistate modeling of habitat

dynamics can also accommodate complications to the

observation process such as collection of habitat state

data at some periods during an interval of interest but

not at others, loss of sample sites (e.g., to an absorbing

state), incomplete sampling of sample units, and

misclassification(Appendix B).
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APPENDIX A

The competing models and model selection results (Ecological Archives E091-237-A1).

APPENDIX B

Approaches for constraining multistate capture–recapture models to estimate habitat and landscape transition probabilities
(Ecological Archives E091-237-A2).

APPENDIX C

Transition matrices used to project effects of alternative management scenarios for four habitat states: short, optimal, tall mixed,
and tall in two scrub ecosystem habitat types (Ecological Archives E091-237-A3).
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