255 research outputs found
Backscattering of linearly polarized light from turbid tissue-like scattering medium with rough surface
In the framework of further development of a unified computational tool for the needs of biomedical optics, we introduce an electric field Monte Carlo (MC) model for simulation of backscattering of coherent linearly polarized light from a turbid tissue-like scattering medium with a rough surface. We consider the laser speckle patterns formation and the role of surface roughness in the depolarization of linearly polarized light backscattered from the medium. The mutual phase shifts due to the photons' pathlength difference within the medium and due to reflection/refraction on the rough surface of the medium are taken into account. The validation of the model includes the creation of the phantoms of various roughness and optical properties, measurements of co-and cross-polarized components of the backscattered/reflected light, its analysis and extensive computer modeling accelerated by parallel computing on the NVIDIA graphics processing units using compute unified device architecture (CUDA). The analysis of the spatial intensity distribution is based on second-order statistics that shows a strong correlation with the surface roughness, both with the results of modeling and experiment. The results of modeling show a good agreement with the results of experimental measurements on phantoms mimicking human skin. The developed MC approach can be used for the direct simulation of light scattered by the turbid scattering medium with various roughness of the surface
Enhanced diagnostic of skin conditions by polarized laser speckles:Phantom studies and computer modeling
The incidence of the skin melanoma, the most commonly fatal form of skin cancer, is increasing faster than any other potentially preventable cancer. Clinical practice is currently hampered by the lack of the ability to rapidly screen the functional and morphological properties of tissues. In our previous study we show that the quantification of scattered laser light polarization provides a useful metrics for diagnostics of the malignant melanoma. In this study we exploit whether the image speckle could improve skin cancer diagnostic in comparison with the previously used free-space speckle. The study includes skin phantom measurements and computer modeling. To characterize the depolarization of light we measure the spatial distribution of speckle patterns and analyse their depolarization ratio taken into account radial symmetry. We examine the dependences of depolarization ratio vs. roughness for phantoms which optical properties are of the order of skin lesions. We demonstrate that the variation in bulk optical properties initiates the assessable changes in the depolarization ratio. We show that image speckle differentiates phantoms significantly better than free-space speckle. The results of experimental measurements are compared with the results of Monte Carlo simulation
Multiple-Quantum Spin Dynamics of Entanglement
Dynamics of entanglement is investigated on the basis of exactly solvable
models of multiple-quantum (MQ) NMR spin dynamics. It is shown that the time
evolution of MQ coherences of systems of coupled nuclear spins in solids is
directly connected with dynamics of the quantum entanglement. We studied
analytically dynamics of entangled states for two- and three-spin systems
coupled by the dipole-dipole interaction. In this case dynamics of the quantum
entanglement is uniquely determined by the time evolution of MQ coherences of
the second order. The real part of the density matrix describing MQ dynamics in
solids is responsible for MQ coherences of the zeroth order while its imaginary
part is responsible for the second order. Thus, one can conclude that dynamics
of the entanglement is connected with transitions from the real part of the
density matrix to the imaginary one and vice versa. A pure state which
generalizes the GHZ and W states is found. Different measures of the
entanglement of this state are analyzed for three-partite systems.Comment: 11 pages, 4 figure
Evolution of spin entanglement and an entanglement witness in multiple-quantum NMR experiments
We investigate the evolution of entanglement in multiple-quantum (MQ) NMR
experiments in crystals with pairs of close nuclear spins-1/2. The initial
thermodynamic equilibrium state of the system in a strong external magnetic
field evolves under the non-secular part of the dipolar Hamiltonian. As a
result, MQ coherences of the zeroth and plus/minus second orders appear. A
simple condition for the emergence of entanglement is obtained. We show that
the measure of the spin pair entanglement, concurrence, coincides qualitatively
with the intensity of MQ coherences of the plus/minus second order and hence
the entanglement can be studied with MQ NMR methods. We introduce an
Entanglement Witness using MQ NMR coherences of the plus/minus second order.Comment: 5 pages, 2 figure
Polarization-correlation optical microscopy of anisotropic biological layers
The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined
Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase
Background: Deoxynucleoside triphosphates (dNTPs) are the normal substrates for DNA sysnthesis is catalyzed by polymerases such as HIV-1 reverse transcriptase (RT). However, substantial amounts of deoxynucleoside diphosphates (dNDPs) are also present in the cell. Use of dNDPs in HIV-1 DNA sysnthesis could have significant implications for the efficacy of nucleoside RT inhibitors such as AZT which are first line therapeutics fro treatment of HIV infection. Our earlier work on HIV-1 reverse transcriptase (RT) suggested that the interaction between the γ phosphate of the incoming dNTP and RT residue K65 in the active site is not essential for dNTP insertion, implying that this polymerase may be able to insert dNPs in addition to dNTPs. Methodology/Principal Findings: We examined the ability of recombinant wild type (wt) and mutant RTs with substitutions at residue K65 to utilize a dNDP substrate in primer extension reactions. We found that wild type HIV-1 RT indeed catalyzes incorporation of dNDP substrates whereas RT with mutations of residue K645 were unable to catalyze this reaction. Wild type HIV-1 RT also catalyzed the reverse reaction, inorganic phosphate-dependent phosphorolysis. Nucleotide-mediated phosphorolytic removal of chain-terminating 3′-terminal nucleoside inhibitors such as AZT forms the basis of HIV-1 resistance to such drugs, and this removal is enhanced by thymidine analog mutations (TAMs). We found that both wt and TAM-containing RTs were able to catalyze Pi-mediated phosphorolysis of 3′-terminal AZT at physiological levels of Pi with an efficacy similar to that for ATP-dependent AZT-excision. Conclusion: We have identified two new catalytic function of HIV-1 RT, the use of dNDPs as substrates for DNA synthesis, and the use of Pi as substrate for phosphorolytic removal of primer 3′-terminal nucleotides. The ability to insert dNDPs has been documented for only one other DNA polymerase The RB69 DNA polymerase and the reverse reaction employing inorganic phosphate has not been documented for any DNA polymerase. Importantly, our results show that Pi-mediated phosphorolysis can contribute to AZT resistance and indicates that factors that influence HIV resistance to AZT are more complex than previously appreciated. © 2008 Garforth et al
Identification of particles with Lorentz factor up to with Transition Radiation Detectors based on micro-strip silicon detectors
This work is dedicated to the study of a technique for hadron identification
in the TeV momentum range, based on the simultaneous measurement of the
energies and of the emission angles of the Transition Radiation (TR) X-rays
with respect to the radiating particles. A detector setup has been built and
tested with particles in a wide range of Lorentz factors (from about to
about crossing different types of radiators. The measured
double-differential (in energy and angle) spectra of the TR photons are in a
reasonably good agreement with TR simulation predictions.Comment: 31 pages, 12 figures, paper published on Nuclear Instruments &
Methods
DESIGN OF A HOT WATER BOILER TO IMPROVE THE ENERGY EFFICIENCY OF AN INDUSTRIAL ENTERPRISE
This work represents the first stage in the design and development of a new type of gas boiler houses with a power range from 200 to 1000 kW using only domestic equipment. The need for its implementation is associated with the low efficiency of existing boiler houses. Their main disadvantages: increased flue gas temperature (due to the low effectiveness of heat exchangers); incomplete combustion of gas (due to inefficient burners); large size and weight of the structure (dependent low-efficiency heat exchangers); large heat losses through imperfect insulation.В работе представлены итоги первого этапа проектирования и разработки нового типа газовых котельных с линейкой мощности от 200 до 1000 кВт при использовании исключительно отечественного оборудования. Необходимость ее выполнения связана с низкой эффективностью существующих котельных. Их основные недостатки: повышенная температура уходящих газов из-за низкой эффективности применяемых теплообменников; недожог газа из-за применения малоэффективных горелочных устройств; большие габариты и вес конструкции из-за низкоэффективных теплообменников; большие потери теплоты через несовершенную изоляцию
Investigation of thermal efficiency of heat exchangers from finned pipes
The design of a heat exchanger finned from the external (gas) side and the calculation of thermal efficiency are studied. According to the results of an experiment conducted under conditions of natural convection, the capacity of the heat exchanger was equal to 653 W. In the case of forced convection with air speed of 1.5 m/s power of the heat exchanger is increased to 904 W. The conducted research could be used in the design of heat exchangers for steam generators and hot water boilers.В работе исследована конструкция теплообменника, оребренного с внешней (газовой) стороны, и произведен расчет тепловой эффективности. По результатам эксперимента, проведённого в условиях естественной конвекции, мощность теплообменника оказалась равной 653 Вт. В случае вынужденной конвекции со скоростью движения воздуха 1,5 м/с мощность теплообменника увеличивается до 904 Вт. Проведенные исследования могут быть использованы при проектировании теплообменников для парогенераторов и водогрейных котлов
- …