390 research outputs found

    The Immunomodulator 1-Methyltryptophan Drives Tryptophan Catabolism Toward the Kynurenic Acid Branch

    Get PDF
    Background: Animal model studies revealed that the application of 1-methyltryptophan (1-MT), a tryptophan (TRP) analog, surprisingly increased plasma levels of the TRP metabolite, kynurenic acid (KYNA). Under inflammatory conditions, KYNA has been shown to mediate various immunomodulatory effects. Therefore, the present study aims to confirm and clarify the effects of 1-MT on TRP metabolism in mice as well as in humans. Methods: Splenocytes from Balb/C or indoleamine 2,3-dioxygenase knockout (IDO1−/−) mice or whole human blood were stimulated with 1-MT for 6, 24, or 36 h. C57BL/6 mice received 1-MT in drinking water for 5 days. Cell-free supernatants and plasma were analyzed for TRP and its metabolites by tandem mass spectrometry (MS/MS). Results: 1-MT treatment induced an increase in TRP and its metabolite, KYNA in Balb/C, IDO−/− mice, and in human blood. Concurrently, the intermediate metabolite kynurenine (KYN), as well as the KYN/TRP ratio, were reduced after 1-MT treatment. The effects of 1-MT on TRP metabolites were similar after the in vivo application of 1-MT to C57BL/6 mice. Conclusions: The data indicate that 1-MT induced an increase of KYNA ex vivo and in vivo confirming previously described results. Furthermore, the results of IDO−/− mice indicate that this effect seems not to be mediated by IDO1. Due to the proven immunomodulatory properties of KYNA, a shift toward this branch of the kynurenine pathway (KP) may be one potential mode of action by 1-MT and should be considered for further applications

    Molecular Organisation of Tick-Borne Encephalitis Virus

    Get PDF
    Tick-borne encephalitis virus (TBEV) is a pathogenic, enveloped, positive-stranded RNA virus in the family Flaviviridae. Structural studies of flavivirus virions have primarily focused on mosquito-borne species, with only one cryo-electron microscopy (cryo-EM) structure of a tick-borne species published. Here, we present a 3.3 Å cryo-EM structure of the TBEV virion of the Kuutsalo-14 isolate, confirming the overall organisation of the virus. We observe conformational switching of the peripheral and transmembrane helices of M protein, which can explain the quasi-equivalent packing of the viral proteins and highlights their importance in stabilising membrane protein arrangement in the virion. The residues responsible for M protein interactions are highly conserved in TBEV but not in the structurally studied Hypr strain, nor in mosquito-borne flaviviruses. These interactions may compensate for the lower number of hydrogen bonds between E proteins in TBEV compared to the mosquito-borne flaviviruses. The structure reveals two lipids bound in the E protein which are important for virus assembly. The lipid pockets are comparable to those recently described in mosquito-borne Zika, Spondweni, Dengue, and Usutu viruses. Our results thus advance the understanding of tick-borne flavivirus architecture and virion-stabilising interactions

    Molecular Organisation of Tick-Borne Encephalitis Virus

    Get PDF
    Tick-borne encephalitis virus (TBEV) is a pathogenic, enveloped, positive-stranded RNA virus in the family Flaviviridae. Structural studies of flavivirus virions have primarily focused on mosquito-borne species, with only one cryo-electron microscopy (cryo-EM) structure of a tick-borne species published. Here, we present a 3.3 Å cryo-EM structure of the TBEV virion of the Kuutsalo-14 isolate, confirming the overall organisation of the virus. We observe conformational switching of the peripheral and transmembrane helices of M protein, which can explain the quasi-equivalent packing of the viral proteins and highlights their importance in stabilising membrane protein arrangement in the virion. The residues responsible for M protein interactions are highly conserved in TBEV but not in the structurally studied Hypr strain, nor in mosquito-borne flaviviruses. These interactions may compensate for the lower number of hydrogen bonds between E proteins in TBEV compared to the mosquito-borne flaviviruses. The structure reveals two lipids bound in the E protein which are important for virus assembly. The lipid pockets are comparable to those recently described in mosquito-borne Zika, Spondweni, Dengue, and Usutu viruses. Our results thus advance the understanding of tick-borne flavivirus architecture and virion-stabilising interactions

    Hemagglutinin Spatial Distribution Shifts in Response to Cholesterol in the Influenza Viral Envelope

    Get PDF
    AbstractInfluenza virus delivers its genome to the host cytoplasm via a process of membrane fusion mediated by the viral hemagglutinin protein. Optimal fusion likely requires multiple hemagglutinin trimers, so the spatial distribution of hemagglutinin on the viral envelope may influence fusion mechanism. We have previously shown that moderate depletion of cholesterol from the influenza viral envelope accelerates fusion kinetics even though it decreases fusion efficiency, both in a reversible manner. Here, we use electron cryo-microscopy to measure how the hemagglutinin lateral density in the viral envelope changes with cholesterol extraction. We extract this information by measuring the radial distribution function of electron density in >4000 viral images per sample, assigning hemagglutinin density by comparing images with and without anti-HA Fab bound. On average, hemagglutinin trimers move closer together: we estimate that the typical trimer-trimer spacing reduces from 94 to 84 Å when ∼90% of cholesterol is removed from the viral membrane. Upon restoration of viral envelope cholesterol, this spacing once again expands. This finding can qualitatively explain the observed changes to fusion kinetics: contemporary models from single-virus microscopy are that fusion requires the engagement of several hemagglutinin trimers in close proximity. If removing cholesterol increases the lateral density of hemagglutinin, this should result in an increase in the rate of fusion

    Prevalence of Listeria species in camel sausages from retail markets in Aydin province in Turkey and RAPD analysis of Listeria monocytogenes isolates

    Get PDF
    Samples were taken from 100 camel sausages from the different retail markets in Aydin province in the south-west of Turkey and they were tested for the presence of Listeria spp by biochemical methods. Samples were enriched using Listeria Enrichment Broth and they were inoculated onto Listeria Selective Agar. Listeria monocytogenes was isolated from nine samples (9%), Listeria innocua from 14 samples (14%) and Listeria welshimeri from two samples(2%). A 701 bp fragment of listeriolysin O sequence for L. monocytogenes was amplified using specific primers by polymerase chain reaction (PCR) for confirmation of the identification. A random primer (OPA-11) was used in a random amplified polymorphic DNA (RAPD) assay. This detected five different band profiles amongst the L. monocytogenes isolates, indicating a relatively large amount of genetic heterogeneity amongst the nine isolates. The study has highlighted the need for improved strategies for food safety, in particular appropriate hygienic precautions to avoid contamination of sausage during the manufacturing process and appropriate preservation techniques during storage and transport, to prevent transmission of Listeria spp to consumers at home and abroad
    corecore