9 research outputs found

    Biomarker records, organic carbon accumulation, and river discharge in the Holocene southern Kara Sea (Arctic Ocean)

    Get PDF
    Within the Russian-German research project on "Siberian River Run-off (SIRRO)" devoted to the freshwater discharge and its influence on biological, geochemical, and geological processes in the Kara Sea, sedimentological and organic-geochemical investigations were carried-out on two well-dated sediment cores from the Yenisei Estuary area. The main goal of this study was to quantify the terrigenous organic carbon accumulation based on biomarker and bulk accumulation rate data, and its relationship to Yenisei river discharge and climate change through Holocene times. The biomarker data at both cores clearly indicate the predominance of terrigenous organic matter, reaching 70 to 100% and 50 to 80% of the total organic carbon within and directly north of the estuary, respectively. During the last about 9 Cal. kyrs. BP represented in the studied sediment section, siliciclastic sediment and (terrigenous) organic carbon input was strongly influenced by postglacial sea-level rise and climate-related changes in river discharge. The mid-Holocene Climatic Optimum is documented by maximum river discharge between 8.2 and 7.3 Cal. kyrs. BP. During the last 2000 years river discharge probably became reduced, and accumulation of both terrigenous and marine organic carbon increased due to increased coagulation of fine-grained material

    Distribution of grain size and clay minerals in surface sediments of the Kara Sea (Fig 4, 5)

    No full text
    In this paper, we summarize data on terrigenous sediment supply in the Kara Sea and its accumulation and spatial and temporal variability during Holocene times. Sedimentological, organic-geochemical, and micropaleontological proxies determined in surface sediments allow to characterize the modern (riverine) terrigenous sediment input. AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the terrigenous sediment fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 cal kyr BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge. Based on sediment thickness charts, echograph profiles and sediment core data, we estimate an average Holocene (0–11 cal kyr BP) annual accumulation of 194,106 t/yr of total sediment for the whole Kara Sea. Based on late Holocene (modern) sediment accumulation in the estuaries, probably 12,106 t/yr of riverine suspended matter (i.e. about 30% of the input) may escape the marginal filter on a geological time scale and is transported onto the open Kara Sea shelf. The high-resolution magnetic susceptibility record of a Yenisei core suggests a short-term variability in Siberian climate and river discharge on a frequency of 300–700 yr. This variability may reflect natural cyclic climate variations to be seen in context with the interannual and interdecadal environmental changes recorded in the High Northern Latitudes over the last decades, such as the NAO/AO pattern. A major decrease in MS values starting near 2.5 cal kyr BP, being more pronounced during the last about 2 cal kyr BP, correlates with a cooling trend over Greenland as indicated in the GISP-2 Ice Core, extended sea-ice cover in the North Atlantic, and advances of glaciers in western Norway. Our still preliminary interpretation of the MS variability has to be proven by further MS records from additional cores as well as other high-resolution multi-proxy Arctic climate records

    The eastern extent of the Barents-Kara ice Sheet during the Last Glacial Maximum based on seismic-reflection data from the eastern Kara Sea

    No full text
    We present sub-bottom profiling (sparker and Parasound) results from the eastern Kara Sea, on the Eurasian Arctic margin, which enable the identification of the Last Glacial Maximum (LGM) ice extent. The analysed profiles show that glacigenic diamicton is ubiquitous at the seafloor, east of about 95°E and 78°N. The eastern margin of this diamicton is expressed in a conspicuous morainic ridge at the entrance to the Vilkitsky Strait, and to the south the diamicton projection aligns with the LGM limit mapped at the north-western Taymyr. The bottom of the Voronin Trough further north is also covered with diamicton and has numerous erosional bedforms, indicating a streamlined flow of grounded ice along the trough. Accurate dating of the diamicton is not attainable, but the correlation of pre-diamict sediments to well-dated sections in the Laptev Sea, and available 14C ages from sediments on top of the diamicton, indicate its LGM age. These results support the palaeogeographic reconstruction that assumes the extension of the LGM Barents–Kara ice sheet as far east as Taymyr. This configuration implies that LGM ice blocked the drainage of the Ob and Yenisey rivers on the Kara shelf. This inference is consistent with the presence of large (>100 km wide) lenses of basin infill adjacent to the southern margin of the diamicton. However, the limited distribution of the eastern Kara ice lobe, not extending on Severnaya Zemlya, suggests that the ice was fairly thin and short-lived: insufficient for the accumulation of the gigantic proglacial lakes that occurred during earlier glaciations
    corecore