28 research outputs found
Performance assessment on manufacturing of unfired bricks using industrial wastes
This paper presents eco-friendly unburnt bricks made up of fly ash, waste plastic powder, waste glass powder, lime, gypsum and crusher sand as alternatives to conventional burnt clay bricks for sustainable development. The research focuses on the maximum utilization of industrial waste in eco-friendly unburnt brick production. Materials are characterized according to their chemical and geotechnical properties. In this research, we use a milled waste glass powder of size less than 600μm and plastic powder obtained from plastic waste of size less than 600μm are added along with crushed sand, gypsum, lime and fly ash with various mix proportions concerning FaL-G mix concept. All the proportions were taken on a weight basis. Compressive strength, water absorption, and efflorescence are the key parameters chosen for comparing the innovative brick with conventional fly ash brick. There are five different mixes (Type A, B, C, D & E) are made in this research. The plastic and glass powders are replaced by crusher sand at the increased rate of 2% in every mix whereas 2%,4%,6%,8%, and 10%. It was found that the type B bricks have 17.63% strength was increased when compared to base mix. From the test results, type B bricks have enhanced mechanical performance when compared to all other mixes
Evaluation of efficiency of different decontamination methods of dental burs: An In vivo study
Introduction: Infection control is very important in dentistry. Both dentist and patients are at risk of communicating diseases during treatment procedures. Dental burs have been identified as a source of cross-contamination between patient and dental personnel. Aim: The present study was done to quantitatively and qualitatively assess the pathogenic contamination of dental burs used for tooth preparation and to determine the effective method of sterilization(autoclave,glass bead sterilizer, hot air oven and surgical spirit immersion) of burs used for crown preparation. Methodology: Dental burs were assessed before and after tooth preparation,also after sterilization burs were evaluated. Conclusion: Findings of our study revealed that among the experimental groups used in the present study, Autoclave and Hot air oven was found to be the relatively best method to sterilize burs. Proper cleaning and sterilization of burs should be strictly employed to prevent cross contamination in clinical practice
Performance assessment on manufacturing of unfired bricks using industrial wastes
This paper presents eco-friendly unburnt bricks made up of fly ash, waste plastic powder, waste glass powder, lime, gypsum and crusher sand as alternatives to conventional burnt clay bricks for sustainable development. The research focuses on the maximum utilization of industrial waste in eco-friendly unburnt brick production. Materials are characterized according to their chemical and geotechnical properties. In this research, we use a milled waste glass powder of size less than 600μm and plastic powder obtained from plastic waste of size less than 600μm are added along with crushed sand, gypsum, lime and fly ash with various mix proportions concerning FaL-G mix concept. All the proportions were taken on a weight basis. Compressive strength, water absorption, and efflorescence are the key parameters chosen for comparing the innovative brick with conventional fly ash brick. There are five different mixes (Type A, B, C, D & E) are made in this research. The plastic and glass powders are replaced by crusher sand at the increased rate of 2% in every mix whereas 2%,4%,6%,8%, and 10%. It was found that the type B bricks have 17.63% strength was increased when compared to base mix. From the test results, type B bricks have enhanced mechanical performance when compared to all other mixes
Not Available
Not AvailableThis genetic diversity study aimed to estimate the population structure and explore the use of association mapping strategies to identify linked markers for bacterial resistance, growth and fruit quality in pomegranate collections from India. In total, 88 accessions including 37 cultivated types were investigated. A total of 112 alleles were amplified by use of 44 publicly available microsatellites for estimating molecular genetic diversity and population structure. Neighbor-joining analysis, model-based population structure and principal component analysis corroborated the genetic relationships among wild-type and cultivated pomegranate collections from India. Our study placed all 88 germplasm into four clusters. We identified a cultivated clade of pomegranates in close proximity to Daru types of wild-type pomegranates that grow naturally near the foothills of the Himalayas. Admixture analysis sorted various lineages of cultivated pomegranates to their respective ancestral forms. We identified four linked markers for fruit weight, titratable acidity and bacterial blight severity. PGCT001 was found associated with both fruit weight and bacterial blight, and the association with fruit weight during both seasons analyzed was significant after Bonferroni correction. This research demonstrates effectiveness of microsatellites to resolve population structure among the wild and cultivar collection of pomegranates and future use for association mapping studies.Not Availabl
Infrared thermography: A potential noninvasive tool to monitor udder health status in dairy cows
The animal husbandry and livestock sectors play a major role in the rural economy, especially for the small and marginal farmers. India has the largest livestock population in the world and ranks first in the milk production. Mastitis is the most common and expensive infectious disease in dairy cattle. The global economic losses per year due to mastitis amounts to USD 35 billion and for Indian dairy industry INR 6000 crores per year. Early detection of mastitis is very important to reduce the economic loss to the dairy farmers and dairy industry. Automated methods for early and reliable detection of mastitis are currently in focus under precision dairying. Skin surface temperature is an important indicator for the diagnosis of cow’s illnesses and for the estimation of their physiological status. Infrared thermography (IRT) is a simple, effective, on-site, and noninvasive method that detects surface heat, which is emitted as infrared radiation and generates pictorial images without causing radiation exposure. In human and bovine medicine, IRT is used as a diagnostic tool for assessment of normal and physiological status