3,241 research outputs found

    Maxwell Fields in Spacetimes Admitting Non-Null Killing Vectors

    Get PDF
    We consider source-free electromagnetic fields in spacetimes possessing a non-null Killing vector field, ξa\xi^a. We assume further that the electromagnetic field tensor, FabF_{ab}, is invariant under the action of the isometry group induced by ξa\xi^a. It is proved that whenever the two potentials associated with the electromagnetic field are functionally independent the entire content of Maxwell's equations is equivalent to the relation \n^aT_{ab}=0. Since this relation is implied by Einstein's equation we argue that it is enough to solve merely Einstein's equation for these electrovac spacetimes because the relevant equations of motion will be satisfied automatically. It is also shown that for the exceptional case of functionally related potentials \n^aT_{ab}=0 implies along with one of the relevant equations of motion that the complementary equation concerning the electromagnetic field is satisfied.Comment: 7 pages,PACS numbers: 04.20.Cv, 04.20.Me, 04.40.+

    Regular phantom black holes

    Full text link
    For self-gravitating, static, spherically symmetric, minimally coupled scalar fields with arbitrary potentials and negative kinetic energy (favored by the cosmological observations), we give a classification of possible regular solutions to the field equations with flat, de Sitter and AdS asymptotic behavior. Among the 16 presented classes of regular rsolutions are traversable wormholes, Kantowski-Sachs (KS) cosmologies beginning and ending with de Sitter stages, and asymptotically flat black holes (BHs). The Penrose diagram of a regular BH is Schwarzschild-like, but the singularity at r=0r=0 is replaced by a de Sitter infinity, which gives a hypothetic BH explorer a chance to survive. Such solutions also lead to the idea that our Universe could be created from a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include kk-essence type scalar fields (with a potential) and scalar-tensor theories of gravity.Comment: revtex4, 4 pages, no figure

    Dirac Quantization of Parametrized Field Theory

    Get PDF
    Parametrized field theory (PFT) is free field theory on flat spacetime in a diffeomorphism invariant disguise. It describes field evolution on arbitrary foliations of the flat spacetime instead of only the usual flat ones, by treating the `embedding variables' which describe the foliation as dynamical variables to be varied in the action in addition to the scalar field. A formal Dirac quantization turns the constraints of PFT into functional Schrodinger equations which describe evolution of quantum states from an arbitrary Cauchy slice to an infinitesimally nearby one.This formal Schrodinger picture- based quantization is unitarily equivalent to the standard Heisenberg picture based Fock quantization of the free scalar field if scalar field evolution along arbitrary foliations is unitarily implemented on the Fock space. Torre and Varadarajan (TV) showed that for generic foliations emanating from a flat initial slice in spacetimes of dimension greater than 2, evolution is not unitarily implemented, thus implying an obstruction to Dirac quantization. We construct a Dirac quantization of PFT,unitarily equivalent to the standard Fock quantization, using techniques from Loop Quantum Gravity (LQG) which are powerful enough to super-cede the no- go implications of the TV results. The key features of our quantization include an LQG type representation for the embedding variables, embedding dependent Fock spaces for the scalar field, an anomaly free representation of (a generalization of) the finite transformations generated by the constraints and group averaging techniques. The difference between 2 and higher dimensions is that in the latter, only finite gauge transformations are defined in the quantum theory, not the infinitesimal ones.Comment: 33 page

    Stabilization of Inverse Miniemulsions by Silyl-Protected Homopolymers

    No full text
    Inverse (water-in-oil) miniemulsions are an important method to encapsulate hydrophilic payloads such as oligonucleotides or peptides. However, the stabilization of inverse miniemulsions usually requires block copolymers that are difficult to synthesize and/or cannot be easily removed after transfer from a hydrophobic continuous phase to an aqueous continuous phase. We describe here a new strategy for the synthesis of a surfactant for inverse miniemulsions by radical addition–fragmentation chain transfer (RAFT) polymerization, which consists in a homopolymer with triisopropylsilyl protecting groups. The protecting groups ensure the efficient stabilization of the inverse (water-in-oil, w/o) miniemulsions. Nanocapsules can be formed and the protecting group can be subsequently cleaved for the re-dispersion of nanocapsules in an aqueous medium with a minimal amount of additional surfactant

    Twist and teleportation analogy of the black hole final state

    Full text link
    Mathematical connection between the quantum teleportation, the most unique feature of quantum information processing, and the black hole final state is studied taking into account the non trivial spacetime geometry. We use the twist operatation for the generalized entanglement measurement and the final state boundary conditions to obtain transfer theorems for the black hole evaporation. This would enable us to put together the universal quantum teleportation and the black hole evaporation in the unified mathematical footing. For a renormalized post selected final state of outgoing Hawking radiation, we found that the measure of mixedness is preserved only in the special case of final-state boundary condition in the micro-canonical form, which resmebles perfect teleportation channel.Comment: version_

    A non-autonomous stochastic discrete time system with uniform disturbances

    Full text link
    The main objective of this article is to present Bayesian optimal control over a class of non-autonomous linear stochastic discrete time systems with disturbances belonging to a family of the one parameter uniform distributions. It is proved that the Bayes control for the Pareto priors is the solution of a linear system of algebraic equations. For the case that this linear system is singular, we apply optimization techniques to gain the Bayesian optimal control. These results are extended to generalized linear stochastic systems of difference equations and provide the Bayesian optimal control for the case where the coefficients of these type of systems are non-square matrices. The paper extends the results of the authors developed for system with disturbances belonging to the exponential family

    Compactness of the space of causal curves

    Full text link
    We prove that the space of causal curves between compact subsets of a separable globally hyperbolic poset is itself compact in the Vietoris topology. Although this result implies the usual result in general relativity, its proof does not require the use of geometry or differentiable structure.Comment: 15 page

    Adiabatic renormalization in theories with modified dispersion relations

    Get PDF
    We generalize the adiabatic renormalization to theories with dispersion relations modified at energies higher than a new scale MCM_C. We obtain explicit expressions for the mean value of the stress tensor in the adiabatic vacuum, up to the second adiabatic order. We show that for any dispersion relation the divergences can be absorbed into the bare gravitational constants of the theory. We also point out that, depending on the renormalization prescription, the renormalized stress tensor may contain finite trans-Planckian corrections even in the limit MCM_C\to\infty.Comment: Typos corrected; to appear in the Proceedings of IRGAC 06, Journal of Physics

    A Concise Introduction to Perturbation Theory in Cosmology

    Full text link
    We give a concise, self-contained introduction to perturbation theory in cosmology at linear and second order, striking a balance between mathematical rigour and usability. In particular we discuss gauge issues and the active and passive approach to calculating gauge transformations. We also construct gauge-invariant variables, including the second order tensor perturbation on uniform curvature hypersurfaces.Comment: revtex4, 16 pages, 3 figures; v2: minor changes, typos corrected, reference added, version accepted by CQ

    Quantum gravitational optics: Effective Raychaudhuri equation

    Get PDF
    Vacuum polarization in QED in a background gravitational field induces interactions which {\it effectively} modify the classical picture of light rays, as the null geodesics of spacetime. These interactions violate the strong equivalence principle and affect the propagation of light leading to superluminal photon velocities. Taking into account the QED vacuum polarization, we study the propagation of a bundle of rays in a background gravitational field. To do so we consider the perturbative deformation of Raychaudhuri equation through the influence of vacuum polarization on photon propagation. We analyze the contribution of the above interactions to the optical scalars namely, shear, vorticity and expansion using the Newman-Penrose formalism.Comment: 17 pages, 1 figure, RevTex format, Replaced with the published versio
    corecore