2,465 research outputs found

    Rolling and sliding of a nanorod between two planes: Tribological regimes and control of friction

    Full text link
    The motion of a cylindrical crystalline nanoparticle sandwiched between two crystalline planes, one stationary and the other pulled at a constant velocity and pressed down by a normal load, is considered theoretically using a planar model. The results of our model calculations show that, depending on load and velocity, the nanoparticle can be either rolling or sliding. At sufficiently high normal loads, several sliding states characterized by different friction forces can coexist, corresponding to different orientations of the nanoparticle, and allowing one to have low or high friction at the same pulling velocity and normal load.Comment: 5 figure

    Slice Stretching at the Event Horizon when Geodesically Slicing the Schwarzschild Spacetime with Excision

    Get PDF
    Slice-stretching effects are discussed as they arise at the event horizon when geodesically slicing the extended Schwarzschild black-hole spacetime while using singularity excision. In particular, for Novikov and isotropic spatial coordinates the outward movement of the event horizon (``slice sucking'') and the unbounded growth there of the radial metric component (``slice wrapping'') are analyzed. For the overall slice stretching, very similar late time behavior is found when comparing with maximal slicing. Thus, the intuitive argument that attributes slice stretching to singularity avoidance is incorrect.Comment: 5 pages, 2 figures, published version including minor amendments suggested by the refere

    Magnetism in one-dimensional quantum dot arrays

    Full text link
    We employ the density functional Kohn-Sham method in the local spin-density approximation to study the electronic structure and magnetism of quasi one-dimensional periodic arrays of few-electron quantum dots. At small values of the lattice constant, the single dots overlap, forming a non-magnetic quantum wire with nearly homogenous density. As the confinement perpendicular to the wire is increased, i.e. as the wire is squeezed to become more one-dimensional, it undergoes a spin-Peierls transition. Magnetism sets in as the quantum dots are placed further apart. It is determined by the electronic shell filling of the individual quantum dots. At larger values of the lattice constant, the band structure for odd numbers of electrons per dot indicates that the array could support spin-polarized transport and therefore act as a spin filter.Comment: 11 pages, 6 figure

    Nonequilibrium fluctuation induced escape from a metastable state

    Full text link
    Based on a simple microscopic model where the bath is in a non-equilibrium state we study the escape from a metastable state in the over-damped limit. Making use of Fokker-Planck-Smoluchowski description we derive the time dependent escape rate in the non-stationary regime in closed analytical form which brings on to fore a strong non-exponential kinetic of the system mode.Comment: 4 pages, no figures, EPJ class file include

    Diffusion and Current of Brownian Particles in Tilted Piecewise Linear Potentials: Amplification and Coherence

    Full text link
    Overdamped motion of Brownian particles in tilted piecewise linear periodic potentials is considered. Explicit algebraic expressions for the diffusion coefficient, current, and coherence level of Brownian transport are derived. Their dependencies on temperature, tilting force, and the shape of the potential are analyzed. The necessary and sufficient conditions for the non-monotonic behavior of the diffusion coefficient as a function of temperature are determined. The diffusion coefficient and coherence level are found to be extremely sensitive to the asymmetry of the potential. It is established that at the values of the external force, for which the enhancement of diffusion is most rapid, the level of coherence has a wide plateau at low temperatures with the value of the Peclet factor 2. An interpretation of the amplification of diffusion in comparison with free thermal diffusion in terms of probability distribution is proposed.Comment: To appear in PR

    Spectral properties of rotating electrons in quantum dots and their relation to quantum Hall liquids

    Full text link
    The exact diagonalization technique is used to study many-particle properties of interacting electrons with spin, confined in a two-dimensional harmonic potential. The single-particle basis is limited to the lowest Landau level. The results are analyzed as a function of the total angular momentum of the system. Only at angular momenta corresponding to the filling factors 1, 1/3, 1/5 etc. the system is fully polarized. The lowest energy states exhibit spin-waves, domains, and localization, depending on the angular momentum. Vortices exist only at excited polarized states. The high angular momentum limit shows localization of electrons and separation of the charge and spin excitations.Comment: 14 pages 18 figure

    Magnetic phases of one-dimensional lattices with 2 to 4 fermions per site

    Full text link
    We study the spectral and magnetic properties of one-dimensional lattices filled with 2 to 4 fermions (with spin 1/2) per lattice site. We use a generalized Hubbard model that takes account all interactions on a lattice site, and solve the many-particle problem by exact diagonalization. We find an intriguing magnetic phase diagram which includes ferromagnetism, spin-one Heisenberg antiferromagnetism, and orbital antiferromagnetism.Comment: 8 pages, 6 figure

    Development of HPD Clusters for MAGIC-II

    Full text link
    MAGIC-II is the second imaging atmospheric Cherenkov telescope of the MAGIC observatory, which has recently been inaugurated on Canary island of La Palma. We are currently developing a new camera based on clusters of hybrid photon detectors (HPD) for the upgrade of MAGIC-II. The photon detectors feature a GaAsP photocathode and an avalanche diode as electron bombarded anodes with internal gain, and were supplied by Hamamatsu Photonics K.K. (R9792U-40). The HPD camera with high quantum efficiency will increase the MAGIC-II sensitivity and lower the energy threshold. The basic performance of the HPDs has been measured and a prototype of an HPD cluster has been developed to be mounted on MAGIC-II. Here we report on the status of the HPD cluster and the project of eventually using HPD clusters in the central area of the MAGIC-II camera.Comment: Contribution to the 31st ICRC, Lodz, Poland, July 200
    corecore