584 research outputs found

    Panel Discussion - Management of Eurasian watermilfoil in the United States using native insects: State regulatory and management issues

    Get PDF
    While researchers have evaluated the potential of native insect herbivores to manage nonindigenous aquatic plant species such as Eurasian watermilfoil ( Myriophyllum spicatum L.), the practical matters of regulatory compliance and implementation have been neglected. A panel of aquatic nuisance species program managers from three state natural resource management agencies (Minnesota, Vermont and Washington) discussed their regulatory and policy concerns. In addition, one ecological consultant attempting to market one of the native insects to manage Eurasian watermilfoil added his perspective on the special challenges of distributing a native biological control agent for management of Eurasian watermilfoil

    The Role of eIF4G-1 Isoforms and Live Cell Imaging of IRES-mediated Translation Initiation in Breast Cancer Cells

    Get PDF
    The development of cancer is a consequence of mutations that lead to dysfunctional cell processes such as unrestrained cell proliferation, resistance to apoptosis, and improper regulation of cell processes such as translation. Cell proliferation and apoptosis are linked to specific gene expression events regulated by protein synthesis, which begins with the binding of various eukaryotic initiation factors (eIF) to mRNA and ribosomes to initiate translation. eIF4G-1 catalyzes two types of translation initiation. Cap-dependent translation requires eIF4E to bind a 5'-methylated mRNA cap and eIF4G-1. This in turn facilitates recruitment and promotes translation of cell cycle and growth-related proteins. Cap-independent translation initiates internally through internal ribosome entry sites (IRES) in the 5' UTR of mRNA and promotes translation of apoptotic mRNAs such as Apaf-1. Previous studies found that eight variants of eIF4G-1 mRNA exist, and five protein isoforms can be resolved by electrophoresis. Each isoform may potentially form a translation complex with activities that differ slightly based on modular binding sites. We hypothesized that the representation of eIF4G-1 isoforms and their activity in the initiation complex varies in tumor-forming human breast cell lines vs. non-tumor-forming lines. However, when eIF4G-1 isoform representation was determined in three breast carcinoma cell lines and one non-tumorigenic breast epithelium cell line, no such systematic increase or decrease of individual isoforms was found. Similar results were seen after two breast cancer cell lines were treated with the chemotherapeutic reagents etoposide and cisplatin. Previous studies in our laboratory demonstrated that in population of human breast cancer cells cap-independent translation could be induced as indicated by the use Apaf-1 IRES, suggesting a shift towards pro-apoptotic protein synthesis. We have now developed a novel dual fluorescence bicistronic reporter containing either the Apaf-1 IRES, or a viral IRES to assay the propensity of these cells on an individual cell basis toward cap-independent translation in vivo. Our results confirm the ability of this assay to measure the ratio of cap-dependent versus cap-independent initiation in single live cells as demonstrated by blue fluorescence or green fluorescence, respectively. By establishing the role of eIF4G-1 isoforms in pro-apoptotic protein synthesis, it may be possible to direct a cell from proliferation to apoptosis by targeting certain isoforms. M.S

    Animal performance and economic implications of alternative production systems for dairy bulls slaughtered at 15 months of age

    Get PDF
    peer-reviewedThe objectives of this experiment were to investigate (i) the influence of varying levels of concentrate supplementation during the grazing season, (ii) alternative finishing strategies for dairy bulls slaughtered at 15 mo of age and (iii) economic implications of these management strategies. Bulls were assigned to a 2 (level of concentrate supplementation during the grazing season: 1 kg [LA] and 2 kg [HA] dry matter [DM]/head daily) × 2 (finishing strategies: concentrates ad libitum group [AL] or grass silage ad libitum plus 5 kg DM of concentrates/head daily group [SC]) factorial arrangement of treatments. Average daily gain (ADG) during the grazing season was greater (P < 0.01) for HA than for LA. Consequently, HA bulls were 16 kg heavier at housing: 214 and 230 kg, respectively (P < 0.05). During the finishing period, ADG tended (P = 0.09) to be greater for LA than for HA. Carcass weight tended (P = 0.08) to be greater for HA than for LA. Fat score was greater for HA. Live weight at slaughter (P < 0.001) and carcass weight (P < 0.001) were 41 and 23 kg greater for AL than for SC, respectively. Conformation (P < 0.05) and fat score (P < 0.05) were greater for AL than for SC. The Grange Dairy Beef Systems Model simulated whole-farm system effects of the production systems. Net margin/head was greater for LA than for HA and greater for SC than for AL. Sensitivity analysis of finishing concentrate price, calf purchase price and beef price showed no re-ranking of the systems on a net margin basis. Although greater animal performance was observed from the higher plane of nutrition, overall profitability was lower.This project (11/SF/322, “BullBeef”) was funded by the Irish Department of Agriculture, Food and the Marine’s competitive research programmes

    Getting Under the Skin of Clinical Inertia in Insulin Initiation: The Translating Research Into Action for Diabetes (TRIAD) Insulin Starts Project

    Get PDF
    Purpose The purpose of this cross-sectional study is to explore primary care providers’ (PCPs) perceptions about barriers to initiating insulin among patients. Studies suggest that many patients with poorly controlled type 2 diabetes do not receive insulin initiation by PCPs. Methods As part of the Translating Research Into Action for Diabetes study, the authors conducted structured interviews in health systems in Indiana, New Jersey, and California, asking PCPs about the importance of insulin initiation and factors affecting this decision. The authors calculated proportions choosing each multiple-choice response option and listed the most frequently offered open-ended response categories. Results Among 83 PCPs, 45% were women; 60% were white; and they averaged 13.4 years in practice. Four-fifths of PCPs endorsed guideline-concordant glycemic targets, but 54% individualized targets based on patient age, life expectancy, medical comorbidities, self-management capacity, and willingness. Most (64%) reported that many patients were resistant to new oral or insulin therapies due to fears about the therapy and what it meant about their disease progression. Two-thirds (64%) cited patient resistance as a barrier to insulin initiation, and 43% cited problems with patient self-management, including cognitive or mental health issues, dexterity, or ability to adhere. Eighty percent felt that patient nonadherence would dissuade them from initiating insulin at least some of the time. Conclusions PCPs perceived that patient resistance and poor self- management skills were significant barriers to initiating insulin. Future studies should investigate whether systems-level interventions to improve patient-provider communication about insulin and enhance providers’ perceptions of patient self-management capacity can increase guideline-concordant, patient-centered insulin initiation

    A Multicriteria Assessment of Forage or Concentrate-Based Finishing Diets for Temperate Pasture-Based Suckler Beef Production Systems

    Get PDF
    This study evaluated the effect of contrasting ‘finishing’ diets on animal performance, meat nutritional value, land use, food-feed competition, farm economics and greenhouse gas (GHG) emissions in temperate pasture-based suckler weanling-to-steer beef systems. Post-weaning, eight-month-old, spring-born, late-maturing breed steers (333 kg) were assigned to one of three systems: (1) Grass silage + 1.2 kg concentrate DM (148 days), followed by pasture (123 days) and finished on ad libitum concentrates (120 days) - slaughter age, 21 months (GRAIN); (2) as per (1) but pasture (196 days) and finished on grass silage ad libitum + 3.5 kg concentrate DM (124 days) - slaughter age, 24 months (SIL+GRAIN); and (3) grass silage-only (148 days), pasture (196 days), silage-only (140 days) and finished on pasture (97 days) - slaughter age, 28 months (FORAGE). The mean target carcass weight was 390 kg for each system. Data generated was used to parameterise a farm-level beef systems model. Measured concentrate DM intake was 1187, 606 and 0 kg/head, and average daily gain was 0.83, 0.72 and 0.62 kg for GRAIN, SIL+GRAIN and FORAGE, respectively. Direct (pasture) land use was lowest for GRAIN. FORAGE was more profitable and was the only net producer of human edible protein and energy/ha. GRAIN produced the lowest GHG emissions per animal and meat essential amino acid concentration. FORAGE was more favourable for GHG emissions per kg of net (produced vs. consumed) production of human edible protein. Muscle amino acid and saturated fatty acid concentrations did not differ between the production systems, but FORAGE had the highest muscle concentration of omega-3 poly-unsaturated fatty acids. Differences in muscle mineral concentration were small. In conclusion, there are inverse relationships between food-feed competition, land-use, economics and GHG emissions per unit of product among different systems

    Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype

    Get PDF
    Mutations in laminin α2-subunit (Lmα2, encoded by LAMA2) are linked to approximately 30% of congenital muscular dystrophy cases. Mice with a homozygous mutation in Lama2 (dy2J mice) express a nonpolymerizing form of laminin-211 (Lm211) and are a model for ambulatory-type Lmα2-deficient muscular dystrophy. Here, we developed transgenic dy2J mice with muscle-specific expression of αLNNd, a laminin/nidogen chimeric protein that provides a missing polymerization domain. Muscle-specific expression of αLNNd in dy2J mice resulted in strong amelioration of the dystrophic phenotype, manifested by the prevention of fibrosis and restoration of forelimb grip strength. αLNNd also restored myofiber shape, size, and numbers to control levels in dy2J mice. Laminin immunostaining and quantitation of tissue extractions revealed increased Lm211 expression in αLNNd-transgenic dy2J mice. In cultured myotubes, we determined that αLNNd expression increased myotube surface accumulation of polymerization-deficient recombinant laminins, with retention of collagen IV, reiterating the basement membrane (BM) changes observed in vivo. Laminin LN domain mutations linked to several of the Lmα2-deficient muscular dystrophies are predicted to compromise polymerization. The data herein support the hypothesis that engineered expression of αLNNd can overcome polymerization deficits to increase laminin, stabilize BM structure, and substantially ameliorate muscular dystrophy

    MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    Get PDF
    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo

    Effect of sunlight exposure on cognitive function among depressed and non-depressed participants: a REGARDS cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Possible physiological causes for the effect of sunlight on mood are through the suprachiasmatic nuclei and evidenced by serotonin and melatonin regulation and its associations with depression. Cognitive function involved in these same pathways may potentially be affected by sunlight exposure. We evaluated whether the amount of sunlight exposure (i.e. insolation) affects cognitive function and examined the effect of season on this relationship.</p> <p>Methods</p> <p>We obtained insolation data for residential regions of 16,800 participants from a national cohort study of blacks and whites, aged 45+. Cognitive impairment was assessed using a validated six-item screener questionnaire and depression status was assessed using the Center for Epidemiologic Studies Depression Scale. Logistic regression was used to find whether same-day or two-week average sunlight exposure was related to cognitive function and whether this relationship differed by depression status.</p> <p>Results</p> <p>Among depressed participants, a dose-response relationship was found between sunlight exposure and cognitive function, with lower levels of sunlight associated with impaired cognitive status (odds ratio = 2.58; 95% CI 1.43–6.69). While both season and sunlight were correlated with cognitive function, a significant relation remained between each of them and cognitive impairment after controlling for their joint effects.</p> <p>Conclusion</p> <p>The study found an association between decreased exposure to sunlight and increased probability of cognitive impairment using a novel data source. We are the first to examine the effects of two-week exposure to sunlight on cognition, as well as the first to look at sunlight's effects on cognition in a large cohort study.</p

    Making Classical Ground State Spin Computing Fault-Tolerant

    Full text link
    We examine a model of classical deterministic computing in which the ground state of the classical system is a spatial history of the computation. This model is relevant to quantum dot cellular automata as well as to recent universal adiabatic quantum computing constructions. In its most primitive form, systems constructed in this model cannot compute in an error free manner when working at non-zero temperature. However, by exploiting a mapping between the partition function for this model and probabilistic classical circuits we are able to show that it is possible to make this model effectively error free. We achieve this by using techniques in fault-tolerant classical computing and the result is that the system can compute effectively error free if the temperature is below a critical temperature. We further link this model to computational complexity and show that a certain problem concerning finite temperature classical spin systems is complete for the complexity class Merlin-Arthur. This provides an interesting connection between the physical behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur
    • 

    corecore