443 research outputs found

    Generalized Sagnac Effect

    Full text link
    Experiments were conducted to study light propagation in a light waveguide loop consisting of linearly and circularly moving segments. We found that any segment of the loop contributes to the total phase difference between two counterpropagating light beams in the loop. The contribution is proportional to a product of the moving velocity v and the projection of the segment length Deltal on the moving direction, Deltaphi=4pivDeltal/clambda. It is independent of the type of motion and the refractive index of waveguides. The finding includes the Sagnac effect of rotation as a special case and suggests a new fiber optic sensor for measuring linear motion with nanoscale sensitivity.Comment: 3 pages (including 3 figures

    A High Density Integrated Genetic Linkage Map of Soybean and the Development of a 1536 Universal Soy Linkage Panel for Quantitative Trait Locus Mapping

    Get PDF
    Single nucleotide polymorphisms (SNPs) are the marker of choice for many researchers due to their abundance and the high-throughput methods available for their multiplex analysis. Only recently have SNP markers been available to researchers in soybean [Glycine max (L.) Merr.] with the release of the third version of the consensus genetic linkage map that added 1141 SNP markers to the map. Our objectives were to add 2500 additional SNP markers to the soybean integrated map and select a set of 1536 SNPs to create a universal linkage panel for high-throughput soybean quantitative trait locus (QTL) mapping. The GoldenGate assay is one high-throughput analysis method capable of genotyping 1536 SNPs in 192 DNA samples over a 3-d period. We designed GoldenGate assays for 3456 SNPs (2956 new plus 500 previously mapped) which were used to screen three recombinant inbred line populations and diverse germplasm. A total of 3000 workable assays were obtained which added about 2500 new SNP markers to create a fourth version of the soybean integrated linkage map. To create a “Universal Soy Linkage Panel” (USLP 1.0) of 1536 SNP loci, SNPs were selected based on even distribution throughout each of the 20 consensus linkage groups and to have a broad range of allele frequencies in diverse germplasm. The 1536 USLP 1.0 will be able to quickly create a comprehensive genetic map in most QTL mapping populations and thus will serve as a useful tool for high-throughput QTL mapping

    SNP-PHAGE – High throughput SNP discovery pipeline

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNPs) as defined here are single base sequence changes or short insertion/deletions between or within individuals of a given species. As a result of their abundance and the availability of high throughput analysis technologies SNP markers have begun to replace other traditional markers such as restriction fragment length polymorphisms (RFLPs), amplified fragment length polymorphisms (AFLPs) and simple sequence repeats (SSRs or microsatellite) markers for fine mapping and association studies in several species. For SNP discovery from chromatogram data, several bioinformatics programs have to be combined to generate an analysis pipeline. Results have to be stored in a relational database to facilitate interrogation through queries or to generate data for further analyses such as determination of linkage disequilibrium and identification of common haplotypes. Although these tasks are routinely performed by several groups, an integrated open source SNP discovery pipeline that can be easily adapted by new groups interested in SNP marker development is currently unavailable. RESULTS: We developed SNP-PHAGE (SNP discovery Pipeline with additional features for identification of common haplotypes within a sequence tagged site (Haplotype Analysis) and GenBank (-dbSNP) submissions. This tool was applied for analyzing sequence traces from diverse soybean genotypes to discover over 10,000 SNPs. This package was developed on UNIX/Linux platform, written in Perl and uses a MySQL database. Scripts to generate a user-friendly web interface are also provided with common queries for preliminary data analysis. A machine learning tool developed by this group for increasing the efficiency of SNP discovery is integrated as a part of this package as an optional feature. The SNP-PHAGE package is being made available open source at . CONCLUSION: SNP-PHAGE provides a bioinformatics solution for high throughput SNP discovery, identification of common haplotypes within an amplicon, and GenBank (dbSNP) submissions. SNP selection and visualization are aided through a user-friendly web interface. This tool is useful for analyzing sequence tagged sites (STSs) of genomic sequences, and this software can serve as a starting point for groups interested in developing SNP markers

    Application of machine learning in SNP discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single nucleotide polymorphisms (SNP) constitute more than 90% of the genetic variation, and hence can account for most trait differences among individuals in a given species. Polymorphism detection software PolyBayes and PolyPhred give high false positive SNP predictions even with stringent parameter values. We developed a machine learning (ML) method to augment PolyBayes to improve its prediction accuracy. ML methods have also been successfully applied to other bioinformatics problems in predicting genes, promoters, transcription factor binding sites and protein structures.</p> <p>Results</p> <p>The ML program C4.5 was applied to a set of features in order to build a SNP classifier from training data based on human expert decisions (True/False). The training data were 27,275 candidate SNP generated by sequencing 1973 STS (sequence tag sites) (12 Mb) in both directions from 6 diverse homozygous soybean cultivars and PolyBayes analysis. Test data of 18,390 candidate SNP were generated similarly from 1359 additional STS (8 Mb). SNP from both sets were classified by experts. After training the ML classifier, it agreed with the experts on 97.3% of test data compared with 7.8% agreement between PolyBayes and experts. The PolyBayes positive predictive values (PPV) (i.e., fraction of candidate SNP being real) were 7.8% for all predictions and 16.7% for those with 100% posterior probability of being real. Using ML improved the PPV to 84.8%, a 5- to 10-fold increase. While both ML and PolyBayes produced a similar number of true positives, the ML program generated only 249 false positives as compared to 16,955 for PolyBayes. The complexity of the soybean genome may have contributed to high false SNP predictions by PolyBayes and hence results may differ for other genomes.</p> <p>Conclusion</p> <p>A machine learning (ML) method was developed as a supplementary feature to the polymorphism detection software for improving prediction accuracies. The results from this study indicate that a trained ML classifier can significantly reduce human intervention and in this case achieved a 5–10 fold enhanced productivity. The optimized feature set and ML framework can also be applied to all polymorphism discovery software. ML support software is written in Perl and can be easily integrated into an existing SNP discovery pipeline.</p

    Reviews

    Get PDF
    Reviews of International and comparative industrial relations, Tatau Tatau - one big union altogether, Remedy for present evils: a history of the New Zealand Public Service Association from 1890, Sexual harassment in the workplace, Employee selection, Legislating for workplace hazards in New Zealand: overseas experience and our present and future needs, People and enterprises - human behaviour in New Zealand organisations and From school to unemployment? The labour market for young peopl

    A Roadmap for Functional Structural Variants in the Soybean Genome

    Get PDF
    Gene structural variation (SV) has recently emerged as a key genetic mechanism underlying several important phenotypic traits in crop species. We screened a panel of 41 soybean (Glycine max) accessions serving as parents in a soybean nested association mapping population for deletions and duplications in more than 53,000 gene models. Array hybridization and whole genome resequencing methods were used as complementary technologies to identify SV in 1528 genes, or approximately 2.8%, of the soybean gene models. Although SV occurs throughout the genome, SV enrichment was noted in families of biotic defense response genes. Among accessions, SV was nearly eightfold less frequent for gene models that have retained paralogs since the last whole genome duplication event, compared with genes that have not retained paralogs. Increases in gene copy number, similar to that described at the Rhg1 resistance locus, account for approximately one-fourth of the genic SV events. This assessment of soybean SV occurrence presents a target list of genes potentially responsible for rapidly evolving and/or adaptive traits

    Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors

    Full text link
    The development of highly-sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response and efficient light controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core-cladding materials, as a result, evanescent field can be enhanced significantly which is the main component of the PCF based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF based gas/ chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber based gas/ chemical sensors, (4) study the effects of different core-cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF based gas/ chemical sensors and possible solutions
    • …
    corecore