5,315 research outputs found

    Globalisation and public health policy

    Get PDF

    Roles of Free Electrons and H2O2 in the Optical Breakdown-Induced Photochemical Reduction of Aqueous [AuCl4]-

    Get PDF
    Free electrons and H2O2 formed in an optical breakdown plasma are found to directly control the kinetics of [AuCl4]− reduction to form Au nanoparticles (AuNPs) during femtosecond laser-assisted synthesis of AuNPs. The formation rates of both free electrons and H2O2 strongly depend on the energy and duration of the 800 nm laser pulses over the ranges of 10−2400 μJ and 30−1500 fs. By monitoring the conversion of [AuCl4]− to AuNPs using in situ UV−vis spectroscopy during laser irradiation, the first- and second-order rate constants in the autocatalytic rate law, k1 and k2, were extracted and compared to the computed free electron densities and experimentally measured H2O2 formation rates. For laser pulse energies of 600 μJ and lower at all pulse durations, the first-order rate constant, k1, was found to be directly proportional to the theoretically calculated plasma volume, in which the electron density exceeds the threshold value of 1.8 × 1020 cm−3. The second-order rate constant, k2, was found to correlate with the measured H2O2 formation rate at all pulse energies and durations, resulting in the empirical relationship k2 ≈ H2O20.5. We have demonstrated that the relative composition of free electrons and H2O2 in the optical breakdown plasma may be controlled by changing the pulse energy and duration, which may make it possible to tune the size and dispersity of AuNPs and other metal nanoparticle products synthesized with femtosecond laser-based methods

    A VLBA Search for a Stimulated Recombination Line from the Accretion Region in NGC1275

    Get PDF
    The radio source 3C84, in NGC1275, has a two sided structure on parsec scales. The northern feature, presumed to be associated with a jet moving away from the Earth, shows strong evidence for free-free absorption. The ionized gas responsible for that absorption would be a source of detectable stimulated recombination line emission for a wide range of physical conditions. The VLBA has been used to search for the H65α\alpha hydrogen recombination line. The line is only expected to be seen against the northern feature which contains a small fraction of the total radio flux density. This spatial discrimination significantly aids the search for a weak line. No line was seen, with upper limits of roughly 15% of the continuum over a velocity range of 1486 km/s with resolutions up to 6.6 km/s. In the absence of a strong radiation field, this would imply that the free-free absorbing gas has a wide velocity width, is moving rapidly relative to the systemic velocity, or is concentrated in a thin, high density structure. All of these possibilities are reasonably likely close to an AGN. However, in the intense radiation environment of the AGN, even considering only the radiation we actually observe passing through the free-free absorbing gas, the non-detection is probably assured by a combination of saturation and radiation damping.Comment: 14 pages with 4 postscript figures. Accepted for publication in the April 2003 Astronomical Journa

    Containerless high temperature property measurements

    Get PDF
    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique

    Center of mass rotation and vortices in an attractive Bose gas

    Full text link
    The rotational properties of an attractively interacting Bose gas are studied using analytical and numerical methods. We study perturbatively the ground state phase space for weak interactions, and find that in an anharmonic trap the rotational ground states are vortex or center of mass rotational states; the crossover line separating these two phases is calculated. We further show that the Gross-Pitaevskii equation is a valid description of such a gas in the rotating frame and calculate numerically the phase space structure using this equation. It is found that the transition between vortex and center of mass rotation is gradual; furthermore the perturbative approach is valid only in an exceedingly small portion of phase space. We also present an intuitive picture of the physics involved in terms of correlated successive measurements for the center of mass state.Comment: version2, 17 pages, 5 figures (3 eps and 2 jpg

    Constructing ensembles for intrinsically disordered proteins

    Get PDF
    The relatively flat energy landscapes associated with intrinsically disordered proteins makes modeling these systems especially problematic. A comprehensive model for these proteins requires one to build an ensemble consisting of a finite collection of structures, and their corresponding relative stabilities, which adequately capture the range of accessible states of the protein. In this regard, methods that use computational techniques to interpret experimental data in terms of such ensembles are an essential part of the modeling process. In this review, we critically assess the advantages and limitations of current techniques and discuss new methods for the validation of these ensembles

    Growth of massive black holes by super-Eddington accretion

    Full text link
    Narrow-Line Seyfert 1 galaxies (NLS1s) and Narrow-Line quasars (NLQs) seem to amount to ~ 10-30 % of active galactic nuclei (AGNs) in the local universe. Together with their average accretion rate, we argue that the black hole (BH) growth by factor of 8-800 happens in these super-Eddington accretion phase of AGNs. Moreover, there is a possible, systematic underestimation of accretion rates (in the Eddington unit) due to an overestimation of BH mass by massive accretion discs for super-Eddington objects. If it is true, the factor of BH growth above may be larger by order(s) of magnitude. In contrast, the growth factor expected in sub-Eddington phase is only ~ 2. Therefore, the cosmic BH growth by accretion is likely dominated by super-Eddington phase, rather than sub-Eddington phase which is the majority among AGNs. This analysis is based on the fraction and the average accretion rate of NLS1s and NLQs obtained for z ~< 0.5. If those numbers are larger at higher redshift (where BHs were probably less grown), super-Eddington accretion would be even more important in the context of cosmic BH growth history.Comment: 4 pages, Latex2e, Accepted for publication in Astronomy and Astrophysics Letters, corrected some typo
    corecore