553 research outputs found

    Novel Phased Array Scanning Employing A Single Feed Without Using Individual Phase Shifters

    Get PDF
    Phased arrays afford many advantages over mechanically steered systems. However, they are also more complex, heavy, and most of all costly. The high cost mainly originates from the complex feeding structure. This paper proposes a novel feeding scheme to eliminate all phase shifters and achieve scanning via one-dimensional motion. Beam scanning is achieved via a series fed array incorporating feeding transmission lines whose wave velocity can be mechanically adjusted. Along with the line design, ideal element impedances to be used in conjunction with the line are derived. Practical designs are shown which achieve scanning to +/-30deg from boresight. Finally, a prototype is fabricated and measured, demonstrating the concept

    Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    Get PDF
    This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation

    Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed

    Get PDF
    The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays

    Implementation of a Novel Low-Cost Low-Profile Ku-Band Antenna Array for Single Beam Steering from Space

    Get PDF
    Phased array antennas afford many advantages over traditional reflector antennas due to their conformality, high aperture efficiency, and unfettered beam steering capability at the price of increased cost and complexity. This paper eliminates the complex and costly array backend via the implementation of a series fed array employing a propagation constant reconfigurable transmission line connecting each element in series. Scanning can then be accomplished through one small (less than or equal to 100mil) linear motion that controls propagation constant. Specifically, each element is fed via a reconfigurable coplanar stripline transmission line with a tapered dielectric insert positioned between the transmission line traces. The dielectric insert is allowed to move up and down to control propagation constant and therefore induce scanning. We present a 20 element patch array design, scanning from -25 deg. less than or equal to theta less than or equal to 21 deg. at 13GHz. Measurements achieve only10.5 deg. less than or equal to theta less than or equal to 22 deg. scanning due to a faulty, yet correctable, manufacturing process. Beam squint is measured to be plus or minus 3 deg. for a 600MHz bandwidth. This prototype was improved to give scanning of 3.5 deg. less than or equal to theta less than or equal to 22 deg. Cross-pol patterns were shown to be -15dB below the main beam. Simulations accounting for fabrication errors match measured patterns, thus validating the designs

    Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    Get PDF
    This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation

    XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells

    Get PDF
    XBP-1, a transcription factor that drives the unfolded protein response (UPR), is activated in B cells when they differentiate to plasma cells. Here, we show that in the B cells, whose capacity to secrete IgM has been eliminated, XBP-1 is induced normally on induction of differentiation, suggesting that activation of XBP-1 in B cells is a differentiation-dependent event, but not the result of a UPR caused by the abundant synthesis of secreted IgM. Without XBP-1, B cells fail to signal effectively through the B-cell receptor. The signalling defects lead to aberrant expression of the plasma cell transcription factors IRF4 and Blimp-1, and altered levels of activation-induced cytidine deaminase and sphingosine-1-phosphate receptor. Using XBP-1-deficient/Blimp-1-GFP transgenic mice, we find that XBP-1-deficient B cells form antibody-secreting plasmablasts in response to initial immunization; however, these plasmablasts respond ineffectively to CXCL12. They fail to colonize the bone marrow and do not sustain antibody production. These findings define the role of XBP-1 in normal plasma cell development and have implications for management of B-cell malignancies

    Spin-dependent dark matter-electron interactions

    Full text link
    Detectors with low thresholds for electron recoil open a new window to direct searches of sub-GeV dark matter (DM) candidates. In the past decade, many strong limits on DM-electron interactions have been set, but most on the one which is spin-independent (SI) of both dark matter and electron spins. In this work, we study DM-atom scattering through a spin-dependent (SD) interaction at leading order (LO), using well-benchmarked, state-of-the-art atomic many-body calculations. Exclusion limits on the SD DM-electron cross section are derived with data taken from experiments with xenon and germanium detectors at leading sensitivities. In the DM mass range of 0.1 - 10 GeV, the best limits set by the XENON1T experiment: σe(SD)<10411040cm2\sigma_e^{\textrm{(SD)}}<10^{-41}-10^{-40}\,\textrm{cm}^2 are comparable to the ones drawn on DM-neutron and DM-proton at slightly bigger DM masses. The detector's responses to the LO SD and SI interactions are analyzed. In nonrelativistic limit, a constant ratio between them leads to an indistinguishability of the SD and SI recoil energy spectra. Relativistic calculations however show the scaling starts to break down at a few hundreds of eV, where spin-orbit effects become sizable. We discuss the prospects of disentangling the SI and SD components in DM-electron interactions via spectral shape measurements, as well as having spin-sensitive experimental signatures without SI background.Comment: Data files and README are provided in the ancillary folde

    2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    Get PDF
    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF)
    corecore