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This presentation addresses the progress made so far in the development of an 
antenna array with reconfigurable transmission line feeds connecting each element 
in series. In particular, 2D traveling wave array employing trapezoidal Dielectric 
Wedge for Beam Steering will be discussed. The presentation includes current status 
of the effort and suggested future work. The work is being done as part of the NASA 
Office of the Chief Technologist’s Space Technology Research Fellowship (NSTRF). 

Abstract 
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Current Technologies 

[1] http://www.aviationweek.com/Blogs.aspx?plckBlogId=Blog:27ec4a53-dcc8-42d0-bd3a-01329aef79a7&plckPostId=Blog:27ec4a53-
dcc8-42d0-bd3a-01329aef79a7Post:6339e6b9-1484-4eed-89b5-f6236600cd8a 
[2] http://archive.nrc-cnrc.gc.ca/eng/projects/hia/phased-array.html  

[1]  

Mechanically Scanned Electronically Scanned 

? 

• Simple 
• Inexpensive 
• Slow 
• Rudimentary capabilities 

 

• Advanced capabilities 
• Fast 
• Expensive 
• Complex 

 

[2]  
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Novel Aspects 

Design Goals: 
• Reduce Complexity 
• Reduce Weight 

Large contributions for both come from the 
backend 

• Reduce Cost 
 

Methodology: 
• Replace backend with simpler feeding mechanism 

 

Replace with 
simpler 
mechanism 
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Approach 

Replace Backend With Simpler 
Mechanism 

• Get rid of all splitters, phase shifters, and amps 
Use Series Fed Array: 

• Array fed at one point (side) 
• Magnitude at each element controlled by varied 

mismatch at element terminals 
• Beam Steering will be accomplished by a 

controllable propagation constant between 
elements 

A motor can bring two fixed sheets closer to 
change the effective dielectric constant 
 

Varied 

Motor to move 
sheets closer or 

farther apart 

Field mostly in 
air, so low εeff 

Field mostly in 
dielectric, so high εeff 

 

 

 

By changing φ (through change of keff) scanning is accomplished: 

Dipole Elements 

Reconfigurable 
transmission line 
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Needed Transmission Line Agility 
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Achieving Scanning 

Move plates 
closer 

Scanning is achieved with one mechanical motion and no phase shifters 
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Comparison of Technologies 

• Simple 
• Inexpensive 
• Slow 
• Rudimentary capabilities 

• Advanced capabilities 
• Fast 
• Expensive 
• Complex 

• Simple 
• Inexpensive 
• Fast 

The technology is a compromise between capability and cost 
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1.195mm 

t 

Geometry 

.375mm 

Variable Parallel Plates 
Geometry – Fine Details 

Air Gap, g 

• Strip Spacing ≤ 0.40mm (λ/20 @ 40GHz) 
o t=0.1mm case → lower max g  

• t=0.05mm 
o Larger  range  
o More precision needed 

• t=0.10mm 
o Smaller  range  
o Less precision needed 
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22 Element Prototype Design 
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2nd Prototype Design

RT6002 
R03010 

60mil 

60mil 

10mil 

g 

12” 

3” 

Practical Transmission Line Design 
• Circuit printed on two 60mil thick RT6002 boards 

o RO3010 becomes ripply when unsupported 
• RO3010 material bonded to inside of one of boards 

g=0.73mil g=9mil 
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Assembly of Prototype 

Pinch together 
two boards with 

metal frames 

Fit top dielectric 
on with shims as 

spacers 

Alignment Pins Tightening Bolts 

Compressing 
Frame 

Top Dielectric 

Bottom Dielectric 

Spacing Shims 

• Metal plates used to ensure rigidness 
• Bolts used to squeeze together 
• Spacers to achieve gap 
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Validation 
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Simulated Pattern
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Measured Pattern

• Scanning Observed 
• Achieving gap imprecise 

o Patterns shifted 
o Gain Lowered 



14 

CPS Line 
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Prototype Pieces 
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g=30mil
g=45mil
g=75mil
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Simulated vs. Measured 
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Simulating Known Differences 

Simulated with known differences 
• Ridge dimensions 
• Overetch 

5˚ 
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2mil 
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g=30mil
g=45mil
g=75mil

Reduced scan range 
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g=40mil
g=55mil
g=100mil

Similar to measured 
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Square Insert Parallel Plate TL 

 

 

 
  

 

  

 

Symmetry 
Plane 
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Improvements 
• Simpler fabrication 
• Built in insert clearance 
• Increased control 

 

Operation 
•  dependent on air to dielectric ratio 
• Insert is retracted to induce scanning 
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Comparison of TL Designs 
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Dipole Capacitive Coupling 
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Excitation 

Termination 

Control aperture excitation 
via coupling gap,  
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  changes excitation profile shape 

 

 

 

 

*  and  determined by choice of , , and  

* 
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*  and  determined by choice of , , and  
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Mathematical Array Weighting 
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 Desired excitation profile 

 

 

Array characteristics 
• Kaiser window used for weighting profile 
• 47 Elements 
•  
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Double Equation Based Taper 
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Try two different Tapers 

Excitation Taper responds as expected 
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Conclusions 
Novel Phased Array Feeding Topology 

• Low Complexity 
• Low Weight 
• Low Cost 

 
Parallel Plate Transmission Line 

• Large  range 
• Great  sensitivity 

Degraded performance 
 

Coplanar Stripline 
•  control 
• Successful prototype 

Smaller scan range 
o Manufacturing error 
o Simulation Validation 

 
Square Insert PPTL 

•  control 
• Easier fabrication 
• Sidelobe control 
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Future Work 

Finish planar array 
• 47x47 element array  
• Ka-Band (25.5-27GHz design frequency) 
• Ability to scan in both elevation and azimuth directions 

o ±30˚ in both directions 
• Novel feeding scheme to reduce  

o Weight  
250 grams (not including excitation) 

o Complexity 
1 excitation and 2 independent phase 
controls 

o Cost 
(1) 18”x12”x0.025” Roger’s TMM 3 board 
(1) 18”x12”x0.125” Roger’s TMM 13i board 
Actuators 
Excitation 

  

  
  
  
  
  

  

  
  
  
  
  

  

  
  
  
  
  

  

  
  
  
  
  

  

  
  
  
  
  

  

  
  
  
  
  

2-D Independent Scanning 
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Questions? 


