

R=20150002318 2019-08-31T12:03:17+00:00Z

2D Traveling Wave Array Employing a Dielectric Wedge for Beam Ste

By: Nicholas K. Host¹, Chi-Chih Che John L. Volakis¹, Félix A. Miranda

¹ElectroScience Laboratory, The Ohio State University, Cc ²NASA Glenn Research Center, Cleveland, OH

[·]rapezoidal [·]ing

,

This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF), NASA Grant #NNX11AN16H

Current Technologies

Mechanically Scanned

- Simple
- Inexpensive
- Slow
- Rudimentary capabilities

Electronically Scanned

- Advanced capabilities
- Fast
- Expensive
- Complex

Design Goals:

- Reduce Complexity
- Reduce Weight
 - Large contributions for both come from the backend
- Reduce Cost

Methodology:

• Replace backend with simpler feeding mechanism

Replace Backend With Simpler Mechanism

• Get rid of all splitters, phase shifters, and amps

Use Series Fed Array:

- Array fed at one point (side)
- Magnitude at each element controlled by varied mismatch at element terminals
- Beam Steering will be accomplished by a controllable propagation constant between elements
 - A motor can bring two fixed sheets closer to change the effective dielectric constant

Needed Transmission Line Agility

Achieving Scanning

Scanning is achieved with one mechanical motion and no phase shifters

- Simple
- Inexpensive
- Slow
- Rudimentary capabilities

- Simple
- Inexpensive
 - Fast

- Advanced capabilities
- Fast
- Expensive
- Complex

The technology is a compromise between **capability** and **cost**

Practical Transmission Line Design

- Circuit printed on two 60mil thick RT6002 boards
 - RO3010 becomes ripply when unsupported 0
- RO3010 material bonded to inside of one of boards

45

Assembly of Prototype

Prototype Pieces

Simulated vs. Measured

Simulated with known differences

- Ridge dimensions
- Overetch

Square Insert Parallel Plate TL

Improvements

- Simpler fabrication
- Built in insert clearance
- Increased *k_{eff}* control

Operation

- *k_{eff}* dependent on air to dielectric ratio
- Insert is retracted to induce scanning

 \leftarrow

 $40mil \rightarrow$

 $P_1 = 10 mil, P_{47} = 2 mil$

* *A* and *B* determined by choice of P_1 , P_{47} , and α

 $\alpha = 0.2, P_{47} = 2mil$

Array characteristics

- Kaiser window used for weighting profile
- 47 Elements
- $\theta_{max} = -20^{\circ}$

Novel Phased Array Feeding Topology

- Low Complexity
- Low Weight
- Low Cost

Parallel Plate Transmission Line

- Large k_{eff} range
- Great k_{eff} sensitivity
 - Degraded performance

Coplanar Stripline

- k_{eff} control
- Successful prototype
 - Smaller scan range
 - Manufacturing error
 - o Simulation Validation

Square Insert PPTL

- $\uparrow k_{eff}$ control
- Easier fabrication
- Sidelobe control

Future Work

Finish planar array

- 47x47 element array
- Ka-Band (25.5-27GHz design frequency)
- Ability to scan in both elevation and azimuth directions
 - \circ ±30° in both directions
- Novel feeding scheme to reduce
 - \circ Weight
 - 250 grams (not including excitation)
 - o Complexity
 - 1 excitation and 2 independent phase controls
 - o Cost
 - (1) 18"x12"x0.025" Roger's TMM 3 board
 - (1) 18"x12"x0.125" Roger's TMM 13i board
 - Actuators
 - Excitation

2-D Independent Scanning

Questions?