990 research outputs found
Comparison of Enamel and Stainless Steel Electron Cloud Clearing Electrodes Tested in the CERN Proton Synchrotron
During the 2007 run with the nominal LHC proton beam, electron cloud has been clearly identified and characterized in the PS using a dedicated setup with shielded button-type pickups. Efficient electron cloud suppression could be achieved with a stainless steel stripline-type electrode biased to negative and positive voltages up to ± 1 kV. For the 2008 run, a second setup was installed in straight section 84 of the PS where the stainless steel was replaced by a stripline composed of an enamel insulator with a resistive coating. In contrast to ordinary stripline electrodes this setup presents a very low beam coupling impedance and could thus be envisaged for long sections of high-intensity machines. Here, we present first comparative measurements with this new type of enamel clearing electrode using the nominal LHC beam with 72 bunches and 25 ns bunch spacing
Generalised Shastry-Sutherland Models in three and higher dimensions
We construct Heisenberg anti-ferromagnetic models in arbitrary dimensions
that have isotropic valence bond crystals (VBC) as their exact ground states.
The d=2 model is the Shastry-Sutherland model. In the 3-d case we show that it
is possible to have a lattice structure, analogous to that of SrCu_2(BO_3)_2,
where the stronger bonds are associated with shorter bond lengths. A dimer mean
field theory becomes exact at d -> infinity and a systematic 1/d expansion can
be developed about it. We study the Neel-VBC transition at large d and find
that the transition is first order in even but second order in odd dimensions.Comment: Published version; slightly expande
Interface Engineering to Create a Strong Spin Filter Contact to Silicon
Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on
silicon is a perfect route to enrich silicon nanotechnology with spin filter
functionality.
To date, the inherent chemical reactivity between EuO and Si has prevented a
heteroepitaxial integration without significant contaminations of the interface
with Eu silicides and Si oxides.
We present a solution to this long-standing problem by applying two
complementary passivation techniques for the reactive EuO/Si interface:
() an hydrogen-Si passivation and () the
application of oxygen-protective Eu monolayers --- without using any additional
buffer layers.
By careful chemical depth profiling of the oxide-semiconductor interface via
hard x-ray photoemission spectroscopy, we show how to systematically minimize
both Eu silicide and Si oxide formation to the sub-monolayer regime --- and how
to ultimately interface-engineer chemically clean, heteroepitaxial and
ferromagnetic EuO/Si in order to create a strong spin filter contact to
silicon.Comment: 11 pages of scientific paper, 10 high-resolution color figures.
Supplemental information on the thermodynamic problem available (PDF).
High-resolution abstract graphic available (PNG). Original research (2016
Raman spectroscopy of human teeth using integrated optical spectrometers
We have designed an arrayed-waveguide grating in silicon oxynitride technology for the detection of Raman signals from tooth enamel in the spectral region between 890 nm and 912 nm. The detected signals for both parallel and cross polarizations are used to distinguish between healthy and carious regions on the tooth surface of extracted human teeth. Our experimental results are in very good agreement with those achieved using conventional Raman spectrometers. Our results represent a step toward the realization of compact, hand-held, integrated spectrometers
A non-Hermitian critical point and the correlation length of strongly correlated quantum systems
We study a non-Hermitian generalization of quantum systems in which an
imaginary vector potential is added to the momentum operator. In the
tight-binding approximation, we make the hopping energy asymmetric in the
Hermitian Hamiltonian. In a previous article, we conjectured that the
non-Hermitian critical point where the energy gap vanishes is equal to the
inverse correlation length of the Hermitian system and we confirmed the
conjecture for two exactly solvable systems. In this article, we present more
evidence for the conjecture. We also argue the basis of our conjecture by
noting the dispersion relation of the elementary excitation.Comment: 25 pages, 18 figure
Design of a chopper line for the CERN SPL
The SPL (Superconducting Proton Linac), a 2.2 GeV linac for high-intensity applications under study at CERN, requires a fast chopping at low energy of the H . beam. The most stringent demands on the chopper come from the operation of a Neutrino Factory, which requires 44 MHz bunch frequency in the accumulator ring and in the muon bunch rotation. This imposes a chopper structure with fast rise and fall times, below 2 ns, to remove 3 consecutive 352 MHz bunches out of every 8. An improved design of the standard travelling-wave chopper structure has been analysed and tested on a prototype. Additional effort has gone into the design of a pulse generator or power amplifier capable of providing the required rise and fall times. Since short rise times and high chopper voltages are conflicting requirements, the maximum voltage has been limited to 500 V per plate. A prototype driver has been built and tested. A very compact beam line design is proposed, which is still compatible with the low chopper voltage. The line houses the chopper structure and the dump, provides the separation between chopped and unchopped beam, and matches both from the RFQ and to a DTL. Effects of space charge and of varying beam parameters are analysed. In particular, the influence of the beam energy at the chopper on the line components is discussed in detail. A diagnostic line designed to perform the measurements necessary to validate this set-up is also described
Recombinant polypeptides for serology of malaria
We have evaluated 3 molecularly defined polypeptides encoded by encloned Plasmodium falciparum genes for their ability to serve as antigens for detecting antimalaria antibodies. The recombinant proteins correspond to (i) a conserved part of 190-200 kDa schizont merozoite surface component, (ii) the carboxy terminal part of the P. falciparum aldolase, and (iii) the 5·1 antigen. Antibodies were detected using enzyme-linked immunosorbent assays (ELISA) in a high percentage of sera from individuals from a malaria endemic area in The Gambia (up to 99% for some adult groups). These results were further improved, especially for detection of antimalaria antibodies in children, when a pool of all 3 polypeptides (ELISA MIXT) was used as antigen. This ELISA MIXT improves presently available assays for the detection of antimalaria antibodies directed against asexual blood stages in respect of standardization, sensitivity and specificit
- …