3,010 research outputs found

    The optimal schedule for pulsar timing array observations

    Full text link
    In order to maximize the sensitivity of pulsar timing arrays to a stochastic gravitational wave background, we present computational techniques to optimize observing schedules. The techniques are applicable to both single and multi-telescope experiments. The observing schedule is optimized for each telescope by adjusting the observing time allocated to each pulsar while keeping the total amount of observing time constant. The optimized schedule depends on the timing noise characteristics of each individual pulsar as well as the performance of instrumentation. Several examples are given to illustrate the effects of different types of noise. A method to select the most suitable pulsars to be included in a pulsar timing array project is also presented.Comment: 16 pages, 6 figures, accepted by MNRA

    Effectiveness of Neuromotor Task Training for Children with Developmental Coordination Disorder: A Pilot Study

    Get PDF
    The aim of this pilot study was to evaluate the effectiveness of a Neuromotor Task Training (NTT), recently developed for the treatment of children with Developmental Coordination Disorder (DCD) by pediatric physical therapists in the Netherlands. NTT is a task-oriented treatment program based upon recent insights from motor control and motor learning research. Ten children with DCD (intervention group) were tested before and after 9 and 18 treatment sessions on the Movement ABC and a dysgraphia scale in order to measure the effectiveness of treatment on gross and fine motor skills in general and handwriting in particular. Five children (no-treatment control group) were tested twice with a time lag of nine weeks on the Movement ABC in order to measure spontaneous improvement. No improvement was measured for the children in the notreatment control group, whereas a significant improvement was found for children in the intervention group for both quality of handwriting and performance on the Movement ABC after 18 treatment sessions

    The beamformer and correlator for the Large European Array for Pulsars

    Get PDF
    The Large European Array for Pulsars combines Europe's largest radio telescopes to form a tied-array telescope that provides high signal-to-noise observations of millisecond pulsars (MSPs) with the objective to increase the sensitivity of detecting low-frequency gravitational waves. As part of this endeavor we have developed a software correlator and beamformer which enables the formation of a tied-array beam from the raw voltages from each of telescopes. We explain the concepts and techniques involved in the process of adding the raw voltages coherently. We further present the software processing pipeline that is specifically designed to deal with data from widely spaced, inhomogeneous radio telescopes and describe the steps involved in preparing, correlating and creating the tied-array beam. This includes polarization calibration, bandpass correction, frequency dependent phase correction, interference mitigation and pulsar gating. A link is provided where the software can be obtained.Comment: 10 pages, 6 figures, accepted for publication in Astronomy and Computin

    Model-based asymptotically optimal dispersion measure correction for pulsar timing

    Full text link
    In order to reach the sensitivity required to detect gravitational waves, pulsar timing array experiments need to mitigate as much noise as possible in timing data. A dominant amount of noise is likely due to variations in the dispersion measure. To correct for such variations, we develop a statistical method inspired by the maximum likelihood estimator and optimal filtering. Our method consists of two major steps. First, the spectral index and amplitude of dispersion measure variations are measured via a time-domain spectral analysis. Second, the linear optimal filter is constructed based on the model parameters found in the first step, and is used to extract the dispersion measure variation waveforms. Compared to current existing methods, this method has better time resolution for the study of short timescale dispersion variations, and generally produces smaller errors in waveform estimations. This method can process irregularly sampled data without any interpolation because of its time-domain nature. Furthermore, it offers the possibility to interpolate or extrapolate the waveform estimation to regions where no data is available. Examples using simulated data sets are included for demonstration.Comment: 15 pages, 15 figures, submitted 15th Sept. 2013, accepted 2nd April 2014 by MNRAS. MNRAS, 201

    Supra-oscillatory critical temperature dependence of Nb-Ho bilayers

    Full text link
    We investigate the critical temperature Tc of a thin s-wave superconductor (Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function of the Ho layer thickness, we observe multiple oscillations of Tc superimposed on a slow decay, that we attribute to the influence of the Ho on the Nb proximity effect. Because of Ho inhomogeneous magnetization, singlet and triplet pair correlations are present in the bilayers. We take both into consideration when solving the self consistent Bogoliubov-de Gennes equations, and we observe a reasonable agreement. We also observe non-trivial transitions into the superconducting state, the zero resistance state being attained after two successive transitions which appear to be associated with the magnetic structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5 figure

    Improving Predictions for Helium Emission Lines

    Get PDF
    We have combined the detailed He I recombination model of Smits with the collisional transitions of Sawey & Berrington in order to produce new accurate helium emissivities that include the effects of collisional excitation from both the 2 (3)S and 2 (1) S levels. We present a grid of emissivities for a range of temperature and densities along with analytical fits and error estimates. Fits accurate to within 1% are given for the emissivities of the brightest lines over a restricted range for estimates of primordial helium abundance. We characterize the analysis uncertainties associated with uncertainties in temperature, density, fitting functions, and input atomic data. We estimate that atomic data uncertainties alone may limit abundance estimates to an accuracy of 1.5%; systematic errors may be greater than this. This analysis uncertainty must be incorporated when attempting to make high accuracy estimates of the helium abundance. For example, in recent determinations of the primordial helium abundance, uncertainties in the input atomic data have been neglected.Comment: ApJ, accepte

    Radio Emission from GRO J1655-40 during the 1994 Jet Ejection Episodes

    Get PDF
    We report multifrequency radio observations of GRO J1655-40 obtained with the Australia Telescope Compact Array, the Molonglo Observatory Synthesis Telescope and the Hartebeesthoek Radio Astronomy Observatory at the time of the major hard X-ray and radio outbursts in 1994 August-September. The radio emission reached levels of the order of a few Jy and was found to be linearly polarized by up to 10%, indicating a synchrotron origin. The light curves are in good agreement with those measured with the VLA, but our closer time sampling has revealed two new short-lived events and significant deviations from a simple exponential decay. The polarization data show that the magnetic field is well ordered and aligned at right angles to the radio jets for most of the monitoring period. The time evolution of the polarization cannot be explained solely in terms of a simple synchrotron bubble model, and we invoke a hybrid `core-lobe' model with a core which contributes both synchrotron and free-free emission and `lobes' which are classical synchrotron emitters.Comment: 36 pages, 5 tables, 9 figures; accepted for publication in Ap

    The Chemical Composition of the Small Magellanic Cloud H II Region NGC 346 and the Primordial Helium Abundance

    Get PDF
    Spectrophotometry in the 3400-7400 range is presented for 13 areas of the brightest H II region in the SMC: NGC 346. The observations were obtained at CTIO with the 4-m telescope. Based on these observations its chemical composition is derived. The helium and oxygen abundances by mass are given by: Y(SMC)=0.2405+-0.0018 and O(SMC)=0.00171+-0.00025. From models and observations of irregular and blue compact galaxies it is found that dY/dO=3.5+-0.9 and consequently that the primordial helium abundance by mass is given by: Yp=0.2345+-0.0026 (1-sigma). This result is compared with values derived from Big Bang nucleosynthesis, and with other determinations of Yp.Comment: 32 pages + 5 figures Referee Revised Versio

    Size of the Vela Pulsar's Radio Emission Region: 500 km

    Full text link
    We use interstellar scattering of the Vela pulsar to determine the size of its emission region. From interferometric phase variations on short baselines, we find that radio-wave scattering broadens the source by 3.4+/-0.3 milliarcseconds along the major axis at position angle 81+/-3 degrees. The ratio of minor axis to major axis is 0.51+/-0.03. Comparison of angular and temporal broadening indicates that the scattering material lies in the Vela-X supernova remnant surrounding the pulsar. From the modulation of the pulsar's scintillation on very short baselines, we infer a size of 500 km for the pulsar's emission region. We suggest that radio-wave refraction within the pulsar's magnetosphere may plausibly explain this size.Comment: 14 pages, includes 2 figures. Also available at: http://charm.physics.ucsb.edu:80/people/cgwinn/cgwinn_group/cgwinn_group.htm

    Gravitational wave astronomy of single sources with a pulsar timing array

    Full text link
    Abbreviated: We investigate the potential of detecting the gravitational wave from individual binary black hole systems using pulsar timing arrays (PTAs) and calculate the accuracy for determining the GW properties. This is done in a consistent analysis, which at the same time accounts for the measurement of the pulsar distances via the timing parallax. We find that, at low redshift, a PTA is able to detect the nano-Hertz GW from super massive black hole binary systems with masses of \sim10^8 - 10^{10}\,M_{\sun} less than ∌105\sim10^5\,years before the final merger, and those with less than ∌103−104\sim10^3 - 10^4 years before merger may allow us to detect the evolution of binaries. We derive an analytical expression to describe the accuracy of a pulsar distance measurement via timing parallax. We consider five years of bi-weekly observations at a precision of 15\,ns for close-by (∌0.5−1\sim 0.5 - 1\,kpc) pulsars. Timing twenty pulsars would allow us to detect a GW source with an amplitude larger than 5×10−175\times 10^{-17}. We calculate the corresponding GW and binary orbital parameters and their measurement precision. The accuracy of measuring the binary orbital inclination angle, the sky position, and the GW frequency are calculated as functions of the GW amplitude. We note that the "pulsar term", which is commonly regarded as noise, is essential for obtaining an accurate measurement for the GW source location. We also show that utilizing the information encoded in the GW signal passing the Earth also increases the accuracy of pulsar distance measurements. If the gravitational wave is strong enough, one can achieve sub-parsec distance measurements for nearby pulsars with distance less than ∌0.5−1\sim 0.5 - 1\,kpc.Comment: 16 pages, 5 figure,, accepted by MNRA
    • 

    corecore