192 research outputs found
Daily supplementation with 15 μg vitamin D2 compared with vitamin D3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women:a 12-wk randomized, placebo-controlled food-fortification trial
Background: There are conflicting views in the literature as to whether vitamin D2 and vitamin D3 are equally effective in increasing and maintaining serum concentrations of 25-hydroxyvitamin D [25(OH)D], particularly at lower doses of vitamin D.
Objective: We aimed to investigate whether vitamin D2 or vitamin D3 fortified in juice or food, at a relatively low dose of 15 μg/d, was effective in increasing serum total 25(OH)D and to compare their respective efficacy in South Asian and white European women over the winter months within the setting of a large randomized controlled trial.
Design: A randomized, double-blind, placebo-controlled food-fortification trial was conducted in healthy South Asian and white European women aged 20–64 y (n = 335; Surrey, United Kingdom) who consumed placebo, juice supplemented with 15 μg vitamin D2, biscuit supplemented with 15 μg vitamin D2, juice supplemented with 15 μg vitamin D3, or biscuit supplemented with 15 μg vitamin D3 daily for 12 wk. Serum 25(OH)D was measured by liquid chromatography–tandem mass spectrometry at baseline and at weeks 6 and 12 of the study.
Results: Postintervention in the 2 ethnic groups combined, both the vitamin D3 biscuit and the vitamin D3 juice groups showed a significantly greater absolute incremental change (Δ) in total 25(OH)D when compared with the vitamin D2 biscuit group [Δ (95% CI): 15.3 nmol/L (7.4, 23.3 nmol/L) (P ≺ 0.0003) and 16.0 nmol/L (8.0, 23.9 nmol/L) ( P ≺ 0.0001)], the vitamin D2 juice group [Δ (95% CI): 16.3 nmol/L (8.4, 24.2 nmol/L) (P ≺ 0.0001) and 16.9 nmol/L (9.0, 24.8 nmol/L) (P ≺ 0.0001)], and the placebo group [Δ (95% CI): 42.3 nmol/L (34.4, 50.2 nmol/L) (P ≺ 0.0001) and 42.9 nmol/L (35.0, 50.8 nmol/L) (P ≺ 0.0002)].
Conclusions: With the use of a daily dose of vitamin D relevant to public health recommendations (15 μg) and in vehicles relevant to food-fortification strategies, vitamin D3 was more effective than vitamin D2 in increasing serum 25(OH)D in the wintertime. Vitamin D3 may therefore be a preferential form to optimize vitamin D status within the general population. This trial was registered at www.controlled-trials.com as ISRCTN23421591.</p
ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle
Abstract The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA—disseminated and implemented in over 70 countries globally—is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease
Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization
Whilst being closely related to the model actinomycete Streptomyces coelicolor A3(2), S. lividans 66 differs from it in several significant and phenotypically observable ways, including antibiotic production. Previous comparative gene hybridization studies investigating such differences have used low-density (one probe per gene) PCR-based spotted arrays. Here we use new experimentally optimised 104,000 × 60-mer probe arrays to characterize in detail the genomic differences between wild-type S. lividans 66, a derivative industrial strain, TK24, and S. coelicolor M145
Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice
The millions of common DNA variations that occur in the human population, or among inbred strains of mice and rats, perturb the expression (transcript levels) of a large fraction of the genes expressed in a particular tissue. The hundreds or thousands of common cis-acting variations that occur in the population may in turn affect the expression of thousands of other genes by affecting transcription factors, signaling molecules, RNA processing, and other processes that act in trans. The levels of transcripts are conveniently quantitated using expression arrays, and the cis- and trans-acting loci can be mapped using quantitative trait locus (QTL) analysis, in the same manner as loci for physiologic or clinical traits. Thousands of such expression QTL (eQTL) have been mapped in various crosses in mice, as well as other experimental organisms, and less detailed maps have been produced in studies of cells from human pedigrees. Such an integrative genetics approach (sometimes referred to as “genetical genomics”) is proving useful for identifying genes and pathways that contribute to complex clinical traits. The coincidence of clinical trait QTL and eQTL can help in the prioritization of positional candidate genes. More importantly, mathematical modeling of correlations between levels of transcripts and clinical traits in genetic crosses can allow prediction of causal interactions and the identification of “key driver” genes. An important objective of such studies will be to model biological networks in physiologic processes. When combined with high-density single nucleotide polymorphism (SNP) mapping, it should be feasible to identify genes that contribute to transcript levels using association analysis in outbred populations. In this review we discuss the basic concepts and applications of this integrative genomic approach to cardiovascular and metabolic diseases
Genome-wide transcriptomic analysis of the response to nitrogen limitation in Streptomyces coelicolor A3(2)
<p>Abstract</p> <p>Background</p> <p>The present study represents a genome-wide transcriptomic analysis of the response of the model streptomycete <it>Streptomyces coelicolor </it>A3(2) M145 to fermentor culture in Modified Evans Media limited, respectively, for nitrogen, phosphate and carbon undertaken as part of the ActinoGEN consortium to provide a publicly available reference microarray dataset.</p> <p>Findings</p> <p>A microarray dataset using samples from two replicate cultures for each nutrient limitation was generated. In this report our analysis has focused on the genes which are significantly differentially expressed, as determined by Rank Products Analysis, between samples from matched time points correlated by growth phase for the three pairs of differently limited culture datasets. With a few exceptions, genes are only significantly differentially expressed between the N6/N7 time points and their corresponding time points in the C and P-limited cultures, with the vast majority of the differentially expressed genes being more highly expressed in the N-limited cultures. Our analysis of these genes indicated expression of several members of the GlnR regulon are induced upon nitrogen limitation, as assayed for by [NH<sub>4</sub><sup>+</sup>] measurements, and we are able to identify several additional genes not present in the GlnR regulon whose expression is induced in response to nitrogen limitation. We also note SCO3327 which encodes a small protein (32 amino acid residues) unusually rich in the basic amino acids lysine (31.25%) and arginine (25%) is significantly differentially expressed in the nitrogen limited cultures. Additionally, we investigate the expression of known members of the GlnR regulon and the relationship between gene organization and expression for the SCO2486-SCO2487 and SCO5583-SCO5585 operons.</p> <p>Conclusions</p> <p>We provide a list of genes whose expression is differentially expressed in low nitrogen culture conditions, including a putative nitrogen storage protein encoded by SCO3327. Our list includes several genes whose expression patterns are similar to up-regulated members of the GlnR regulon and are induced in response to nitrogen limitation. These genes represent likely targets for future studies into the nitrogen starvation response in <it>Streptomyces coelicolor</it>.</p
ANALYSIS OF LIFE INSURANCE INVESTMENT COMPOSITION
Economic recession and global mettle down have brought the question of insurance
company investment to the forefront. Growing attention has shifted to the pattern of investments by the
insurance and question of how to evaluate such investments. The aim of this research is to evaluate
investment compositions which are made by life insurance companies in Indonesia, as well as to know the
effects on the performance of Insurance companies
ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle
The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA—disseminated and implemented in over 70 countries globally—is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease
Recurrent SARS-CoV-2 mutations in immunodeficient patients
Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape, or viral packaging optimisation.There is an apparent selective pressure for mutations that aid cell–cell transmission within the host or persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be discounted
Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021
This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020-December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population
Tracking SARS-CoV-2 mutations and variants through the COG-UK-Mutation Explorer
COG-UK Mutation Explorer (COG-UK-ME, http://sars2.cvr.gla.ac.uk/cog-uk/-last accessed date 16 March 2022) is a web resource that displays knowledge and analyses on SARS-CoV-2 virus genome mutations and variants circulating in the UK, with a focus on the observed amino acid replacements that have an antigenic role in the context of the human humoral and cellular immune response. This analysis is based on more than 2 million genome sequences (as of March 2022) for UK SARS-CoV-2 data held in the CLIMB-COVID centralised data environment. COG-UK-ME curates these data and displays analyses that are cross-referenced to experimental data collated from the primary literature. The aim is to track mutations of immunological importance that are accumulating in current variants of concern and variants of interest that could alter the neutralising activity of monoclonal antibodies (mAbs), convalescent sera, and vaccines. Changes in epitopes recognised by T cells, including those where reduced T cell binding has been demonstrated, are reported. Mutations that have been shown to confer SARS-CoV-2 resistance to antiviral drugs are also included. Using visualisation tools, COG-UK-ME also allows users to identify the emergence of variants carrying mutations that could decrease the neutralising activity of both mAbs present in therapeutic cocktails, e.g. Ronapreve. COG-UK-ME tracks changes in the frequency of combinations of mutations and brings together the curated literature on the impact of those mutations on various functional aspects of the virus and therapeutics. Given the unpredictable nature of SARS-CoV-2 as exemplified by yet another variant of concern, Omicron, continued surveillance of SARS-CoV-2 remains imperative to monitor virus evolution linked to the efficacy of therapeutics
- …