32 research outputs found
Defining the molecular basis of interaction between R3 receptor-type protein tyrosine phosphatases and VE-cadherin
Receptor-type protein tyrosine phosphatases (RPTPs) of the R3 subgroup play key roles in the immune, vascular and nervous systems. They are characterised by a large ectodomain comprising multiple FNIII-like repeats, a transmembrane domain, and a single intracellular phosphatase domain. The functional role of the extracellular region has not been clearly defined and potential roles in ligand interaction, di-merization, and regulation of cell-cell contacts have been reported. Here bimolecular fluorescence complementation (BiFC) in live cells was used to examine the molecular basis for the interaction of VE-PTP with VE-cadherin, two proteins involved in endothelial cell contact and maintenance of vascu-lar integrity. The potential of other R3-PTPs to interact with VE-cadherin was also explored using this method. Quantitative BiFC analysis, using a VE-PTP construct expressing only the ectodomain and transmembrane domain, revealed a specific interaction with VE-cadherin, when compared with con-trols. Controls were sialophorin, an unrelated membrane protein with a large ectodomain, and a mem-brane anchored C-terminal Venus-YFP fragment, lacking both ectodomain and transmembrane do-mains. Truncation of the first 16 FNIII-like repeats from the ectodomain of VE-PTP indicated that re-moval of this region is not sufficient to disrupt the interaction with VE-cadherin, although it occurs predominantly in an intracellular location. A construct with a deletion of only the 17th domain of VE-PTP was, in contrast to previous studies, still able to interact with VE-cadherin, although this also was predominantly intracellular. Other members of the R3-PTP family (DEP-1, GLEPP1 and SAP-1) also exhibited the potential to interact with VE-cadherin. The direct interaction of DEP-1 with VE-cadherin is likely to be of physiological relevance since both proteins are expressed in endothelial cells. Together the data presented in the study suggest a role for both the ectodomain and transmembrane domain of R3-PTPs in interaction with VE-cadherin
Detection of K-Ras mutations in tumour samples of patients with non-small cell lung cancer using PNA-mediated PCR clamping
Non-small cell lung cancers (NSCLC), in particular adenocarcinoma, are often mixed with normal cells. Therefore, low sensitivity of direct sequencing used for K-Ras mutation analysis could be inadequate in some cases. Our study focused on the possibility to increase the detection of K-Ras mutations in cases of low tumour cellularity. Besides direct sequencing, we used wild-type hybridisation probes and peptide-nucleic-acid (PNA)-mediated PCR clamping to detect mutations at codons 12 and 13, in 114 routine consecutive NSCLC frozen surgical tumours untreated by targeted drugs. The sensitivity of the analysis without or with PNA was 10 and 1% of tumour DNA, respectively. Direct sequencing revealed K-Ras mutations in 11 out of 114 tumours (10%). Using PNA-mediated PCR clamping, 10 additional cases of K-Ras mutations were detected (21 out of 114, 18%, P<0.005), among which five in samples with low tumour cellularity. In adenocarcinoma, K-Ras mutation frequency increased from 7 out of 55 (13%) by direct sequencing to 15 out of 55 (27%) by clamped-PCR (P<0.005). K-Ras mutations detected by these sensitive techniques lost its prognostic value. In conclusion, a rapid and sensitive PCR-clamping test avoiding macro or micro dissection could be proposed in routine analysis especially for NSCLC samples with low percentage of tumour cells such as bronchial biopsies or after neoadjuvant chemotherapy
The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis
The proto-oncogene RAS, coding for a 21 kDa protein (p21), is mutated in 20% of lung cancer. However, the literature remains controversial on its prognostic significance for survival in lung cancer. We performed a systematic review of the literature with meta-analysis to assess its possible prognostic value on survival. Published studies on lung cancer assessing prognostic value of RAS mutation or p21 overexpression on survival were identified by an electronic search. After a methodological assessment, we estimated individual hazard ratios (HR) estimating RAS protein alteration or RAS mutation effect on survival and combined them using meta-analytic methods. In total, 53 studies were found eligible, with 10 concerning the same cohorts of patients. Among the 43 remaining studies, the revelation method was immunohistochemistry (IHC) in nine and polymerase chain reaction (PCR) in 34. Results in terms of survival were significantly pejorative, significantly favourable, not significant and not conclusive in 9, 1, 31, 2, respectively. In total, 29 studies were evaluable for meta-analysis but we aggregated only the 28 dealing with non-small-cell lung cancer (NSCLC) and not the only one dealing with small-cell-lung cancer (SCLC). The quality scores were not statistically significantly different between studies with or without significant results in terms of survival, allowing us to perform a quantitative aggregation. The combined HR was 1.35 (95% CI: 1.16–1.56), showing a worse survival for NSCLC with KRAS2 mutations or p21 overexpression and, particularly, in adenocarcinomas (ADC) (HR 1.59; 95% CI 1.26–2.02) and in studies using PCR (HR 1.40; 95% CI 1.18–1.65) but not in studies using IHC (HR 1.08; 95% CI 0.86–1.34). RAS appears to be a pejorative prognostic factor in terms of survival in NSCLC globally, in ADC and when it is studied by PCR
Robust design optimization: On methodology and short review
Integrated circuit (IC) packages can delaminate under thermal cyclic loading because of elastic properties mismatch between the components. On the other hand, delamination has no pattern which points out the effect of variations of the design parameters on the response. Hence, a robustness estimation should be done to have more stable IC packages which show no important variations in the response with respect to uncertainties in the design parameters. In this paper, the importance of the robustness estimation for IC package design will be explained and a methodology on robust design estimations will be introduced. After that a short literature review will be given about robust design optimization
Fatigue Crack Growth Analysis of Interface between Lead Frame and Molding Compound
Cyclic thermo-mechanical loading together with mismatch of elastic properties between the components can lead to fatigue crack growth at interfaces and finally to interfacial delamination, potentially resulting in malfunction of an integrated circuit (IC) at the end. This work aims for a methodology to characterize one of such interfaces. The overall intention is to integrate methods into virtually conducted DoEs (design-of-experiments) for the determination of most robust design of packages with respect to fatigue crack growth at lead frame molding compound interface. In this manner, a miniaturized sub-critical bending test (MSCB), first demonstrated by [1], was optimized and used to characterize the interface between lead frame (LF) and molding compound (MC). Interfacial fatigue crack growth was quantitatively determined on samples taken from production line. Experimental crack length is determined by compliance method and by help of finite element method. Finally, sub-critical strain energy release rate is determined by using numerical methods and then Paris-Erdogan curves at different temperatures are formed for the related interface. Later these sub-critical strain energy release rate values are used to forecast crack growth in IC Packages under temperature cycle tests in which initial crack is created by a separator
A GPBAR1 (TGR5) small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE) in vivo.
GPBAR1 is a G protein-coupled receptor that is activated by certain bile acids and plays an important role in the regulation of bile acid synthesis, lipid metabolism, and energy homeostasis. Recent evidence suggests that GPBAR1 may also have important effects in reducing the inflammatory response through its expression on monocytes and macrophages. To further understand the role of GPBAR1 in inflammation, we generated a novel, selective, proprietary GPBAR1 agonist and tested its effectiveness at reducing monocyte and macrophage activation in vitro and in vivo. We have used this agonist, together with previously described agonists to study agonism of GPBAR1, and shown that they can all induce cAMP and reduce TLR activation-induced cytokine production in human monocytes and monocyte-derived macrophages in vitro. Additionally, through the usage of RNA sequencing (RNA-Seq), we identified a select set of genes that are regulated by GPBAR1 agonism during LPS activation. To further define the in vivo role of GPBAR1 in inflammation, we assessed GPBAR1 expression and found high levels on circulating mouse monocytes. Agonism of GPBAR1 reduced LPS-induced cytokine production in mouse monocytes ex vivo and serum cytokine levels in vivo. Agonism of GPBAR1 also had profound effects in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis, where monocytes play an important role. Mice treated with the GPBAR1 agonist exhibited a significant reduction in the EAE clinical score which correlated with reduced monocyte and microglial activation and reduced trafficking of monocytes and T cells into the CNS. These data confirm the importance of GPBAR1 in controlling monocyte and macrophage activation in vivo and support the rationale for selective agonists of GPBAR1 in the treatment of inflammatory diseases