190 research outputs found

    Random Neighbor Theory of the Olami-Feder-Christensen Earthquake Model

    Full text link
    We derive the exact equations of motion for the random neighbor version of the Olami-Feder-Christensen earthquake model in the infinite-size limit. We solve them numerically, and compare with simulations of the model for large numbers of sites. We find perfect agreement. But we do not find any scaling or phase transitions, except in the conservative limit. This is in contradiction to claims by Lise & Jensen (Phys. Rev. Lett. 76, 2326 (1996)) based on approximate solutions of the same model. It indicates again that scaling in the Olami-Feder-Christensen model is only due to partial synchronization driven by spatial inhomogeneities. Finally, we point out that our method can be used also for other SOC models, and treat in detail the random neighbor version of the Feder-Feder model.Comment: 18 pages, 6 ps-figures included; minor correction in sec.

    Robust Dropping Criteria for F-norm Minimization Based Sparse Approximate Inverse Preconditioning

    Full text link
    Dropping tolerance criteria play a central role in Sparse Approximate Inverse preconditioning. Such criteria have received, however, little attention and have been treated heuristically in the following manner: If the size of an entry is below some empirically small positive quantity, then it is set to zero. The meaning of "small" is vague and has not been considered rigorously. It has not been clear how dropping tolerances affect the quality and effectiveness of a preconditioner MM. In this paper, we focus on the adaptive Power Sparse Approximate Inverse algorithm and establish a mathematical theory on robust selection criteria for dropping tolerances. Using the theory, we derive an adaptive dropping criterion that is used to drop entries of small magnitude dynamically during the setup process of MM. The proposed criterion enables us to make MM both as sparse as possible as well as to be of comparable quality to the potentially denser matrix which is obtained without dropping. As a byproduct, the theory applies to static F-norm minimization based preconditioning procedures, and a similar dropping criterion is given that can be used to sparsify a matrix after it has been computed by a static sparse approximate inverse procedure. In contrast to the adaptive procedure, dropping in the static procedure does not reduce the setup time of the matrix but makes the application of the sparser MM for Krylov iterations cheaper. Numerical experiments reported confirm the theory and illustrate the robustness and effectiveness of the dropping criteria.Comment: 27 pages, 2 figure

    On the robustness of scale invariance in SOC models

    Full text link
    A random neighbor extremal stick-slip model is introduced. In the thermodynamic limit, the distribution of states has a simple analytical form and the mean avalanche size, as a function of the coupling parameter, is exactly calculable. The system is critical only at a special point Jc in the coupling parameter space. However, the critical region around this point, where approximate scale invariance holds, is very large, suggesting a mechanism for explaining the ubiquity of scale invariance in Nature.Comment: 6 pages, 4 figures; submitted to Physical Review E; http://link.aps.org/doi/10.1103/PhysRevE.59.496

    Rational isogenies from irrational endomorphisms

    Get PDF
    In this paper, we introduce a polynomial-time algorithm to compute a connecting O\mathcal{O}-ideal between two supersingular elliptic curves over Fp\mathbb{F}_p with common Fp\mathbb{F}_p-endomorphism ring O\mathcal{O}, given a description of their full endomorphism rings. This algorithm provides a reduction of the security of the CSIDH cryptosystem to the problem of computing endomorphism rings of supersingular elliptic curves. A similar reduction for SIDH appeared at Asiacrypt 2016, but relies on totally different techniques. Furthermore, we also show that any supersingular elliptic curve constructed using the complex-multiplication method can be located precisely in the supersingular isogeny graph by explicitly deriving a path to a known base curve. This result prohibits the use of such curves as a building block for a hash function into the supersingular isogeny graph

    PATHOGEN-SPECIFIC ANTIBODY PROFILES IN PATIENTS WITH SEVERE SYSTEMIC INFECTIONS

    Get PDF
    Infections are often caused by pathobionts, endogenous bacteria that belong to the microbiota. Trauma and surgical intervention can allow bacteria to overcome host defences, ultimately leading to sepsis if left untreated. One of the main defence strategies of the immune system is the production of highly specific antibodies. In the present proof-of-concept study, plasma antibodies against 9 major pathogens were measured in sepsis patients, as an example of severe systemic infections. The binding of plasma antibodies to bacterial extracellular proteins was quantified using a semi-automated immunoblot assay. Comparison of the pathogen-specific antibody levels before and after infection showed an increase in plasma IgG in 20 out of 37 tested patients. This host-directed approach extended the results of pathogen-oriented microbiological and PCR diagnostics: a specific antibody response to additional bacteria was frequently observed, indicating unrecognised poly-microbial invasion. This might explain some cases of failed, seemingly targeted antibiotic treatment

    Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene

    Get PDF
    Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5 mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid

    Analysis of Bonding between Conjugated Organic Molecules and Noble Metal Surfaces Using Orbital Overlap Populations

    Get PDF
    The electronic structure of metal−organic interfaces is of paramount importance for the properties of organic electronic and single-molecule devices. Here, we use so-called orbital overlap populations derived from slab-type band-structure calculations to analyze the covalent contribution to the bonding between an adsorbate layer and a metal. Using two prototypical molecules, the strong acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) on Ag(111) and the strong donor 1H,1′H-[4,4′]bipyridinylidene (HV0) on Au(111), we present overlap populations as particularly versatile tools for describing the metal−organic interaction. Going beyond traditional approaches, in which overlap populations are represented in an atomic orbital basis, we also explore the use of a molecular orbital basis to gain significant additional insight. On the basis of the derived quantities, it is possible to identify the parts of the molecules responsible for the bonding and to analyze which of the molecular orbitals and metal bands most strongly contribute to the interaction and where on the energy scale they interact in bonding or antibonding fashion
    • …
    corecore