78 research outputs found

    A repurposing strategy for Hsp90 inhibitors demonstrates their potency against filarial nematodes

    Get PDF
    Novel drugs are required for the elimination of infections caused by filarial worms, as most commonly used drugs largely target the microfilariae or first stage larvae of these infections. Previous studies, conducted in vitro, have shown that inhibition of Hsp90 kills adult Brugia pahangi. As numerous small molecule inhibitors of Hsp90 have been developed for use in cancer chemotherapy, we tested the activity of several novel Hsp90 inhibitors in a fluorescence polarization assay and against microfilariae and adult worms of Brugia in vitro. The results from all three assays correlated reasonably well and one particular compound, NVP-AUY922, was shown to be particularly active, inhibiting Mf output from female worms at concentrations as low as 5.0 nanomolar after 6 days exposure to drug. NVP-AUY922 was also active on adult worms after a short 24 h exposure to drug. Based on these in vitro data, NVP-AUY922 was tested in vivo in a mouse model and was shown to significantly reduce the recovery of both adult worms and microfilariae. These studies provide proof of principle that the repurposing of currently available Hsp90 inhibitors may have potential for the development of novel agents with macrofilaricidal properties

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Genetic Selection of Low Fertile Onchocerca volvulus by Ivermectin Treatment

    Get PDF
    Onchocerca volvulus is the causative agent of onchocerciasis, or “river blindness”. Ivermectin has been used for mass treatment of onchocerciasis for up to 18 years, and recently there have been reports of poor parasitological responses to the drug and evidence of drug resistance. Drug resistance has a genetic basis. In this study, genetic changes in β-tubulin, a gene associated with ivermectin resistance in nematodes, were seen in parasites obtained from the patients exposed to repeated ivermectin treatment compared with parasites obtained from the same patients before any exposure to ivermectin. Furthermore, the extent of the genetic changes was dependent on the level of ivermectin treatment exposure. This genetic selection was associated with a lower reproductive rate in the female parasites. The data indicates that this genetic selection is for a population of O. volvulus that is more tolerant to ivermectin. This selection could have implications for the development of ivermectin resistance in O. volvulus and for the ongoing onchocerciasis control programmes. Monitoring for the possible development and spread of ivermectin resistance, as part of the control programmes, should be implemented so that any foci of resistant parasites can be treated by alternative control measures

    Assay strategies for the discovery and validation of therapeutics targeting <i>Brugia pahangi</i> Hsp90

    Get PDF
    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target

    Phenotypic Evidence of Emerging Ivermectin Resistance in Onchocerca volvulus

    Get PDF
    Onchocerciasis, commonly known as river blindness, is caused by the filarial nematode Onchocerca volvulus and is transmitted by a blackfly vector. Over 37 million people are thought to be infected, with over 90 million at risk. Infection predominantly occurs in sub-Saharan Africa. Foci also exist in the Arabian Peninsula and Central and South America. Ivermectin, the sole pharmaceutical available for mass chemotherapy, has been used on a community basis for annual or semi-annual treatment since 1987. Multiple treatments with ivermectin kill the microfilariae that are responsible for the pathology of onchocerciasis. More importantly, ivermectin suppresses the reproductive activity of the adult female worms, thus delaying or preventing the repopulation of the skin with new microfilariae and thereby reducing transmission. This study extends earlier reports of sub-optimal responses to ivermectin by examining repopulation levels of microfilaria one year after treatment, worm burdens per nodule, the age structure of adult female worms recovered from nodules, and the reproductive status of adult female worms 90 days after ivermectin treatment. In some communities which have shown a pattern of sub-optimal response to treatment, the data is consistent with an emergence of ivermectin non response or resistance manifested by a loss of the effect of ivermectin on the suppression of parasite reproduction

    The Wolbachia endosymbiont as an anti-filarial nematode target

    Get PDF
    Human disease caused by parasitic filarial nematodes is a major cause of global morbidity. The parasites are transmitted by arthropod intermediate hosts and are responsible for lymphatic filariasis (elephantiasis) or onchocerciasis (river blindness). Within these filarial parasites are intracellular alpha-proteobacteria, Wolbachia, that were first observed almost 30 years ago. The obligate endosymbiont has been recognized as a target for anti-filarial nematode chemotherapy as evidenced by the loss of worm fertility and viability upon antibiotic treatment in an extensive series of human trials. While current treatments with doxycycline and rifampicin are not practical for widespread use due to the length of required treatments and contraindications, anti-Wolbachia targeting nevertheless appears a promising alternative for filariasis control in situations where current programmatic strategies fail or are unable to be delivered and it provides a superior efficacy for individual therapy. The mechanisms that underlie the symbiotic relationship between Wolbachia and its nematode hosts remain elusive. Comparative genomics, bioinfomatic and experimental analyses have identified a number of potential interactions, which may be drug targets. One candidate is de novo heme biosynthesis, due to its absence in the genome sequence of the host nematode, Brugia malayi, but presence in Wolbachia and its potential roles in worm biology. We describe this and several additional candidate targets, as well as our approaches for understanding the nature of the host-symbiont relationship

    Macrofilaricidal Activity after Doxycycline Only Treatment of Onchocerca volvulus in an Area of Loa loa Co-Endemicity: A Randomized Controlled Trial

    Get PDF
    The control of onchocerciasis in Africa relies on the sustained delivery of ivermectin. In certain areas, annual treatments delivered with high population coverage for at least 15–17 years can break transmission. In other endemic settings this strategy alone is thought to be insufficient to eradicate the disease. One of the major limitations occurs in areas that are co-endemic with another filarial infection caused by Loa loa, due to the risk of a rare severe adverse event associated with the rapid killing of L. loa microfilariae in heavily parasitized individuals. There are also concerns over recent evidence of reduced efficacy of ivermectin and the possible development of resistance. An alternative approach is to target the Wolbachia bacterial endosymbionts of Onchocerca volvulus with the antibiotic, doxycycline. In an area of Cameroon co-endemic for onchocerciasis and loiasis we conducted a trial comparing doxycycline with or without ivermectin treatment to ivermectin treatment alone. A six-week course of doxycycline delivers macrofilaricidal and sterilizing activities, which is not dependent upon co-administration of ivermectin. Doxycycline is well tolerated in patients co-infected with moderate intensities of L. loa microfilariae. The trial indicates that anti-wolbachial therapy is a feasible alternative to ivermectin in communities co-endemic for onchocerciasis and loiasis

    A Research Agenda for Helminth Diseases of Humans: Intervention for Control and Elimination

    Get PDF
    Recognising the burden helminth infections impose on human populations, and particularly the poor, major intervention programmes have been launched to control onchocerciasis, lymphatic filariasis, soil-transmitted helminthiases, schistosomiasis, and cysticercosis. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A summary of current helminth control initiatives is presented and available tools are described. Most of these programmes are highly dependent on mass drug administration (MDA) of anthelmintic drugs (donated or available at low cost) and require annual or biannual treatment of large numbers of at-risk populations, over prolonged periods of time. The continuation of prolonged MDA with a limited number of anthelmintics greatly increases the probability that drug resistance will develop, which would raise serious problems for continuation of control and the achievement of elimination. Most initiatives have focussed on a single type of helminth infection, but recognition of co-endemicity and polyparasitism is leading to more integration of control. An understanding of the implications of control integration for implementation, treatment coverage, combination of pharmaceuticals, and monitoring is needed. To achieve the goals of morbidity reduction or elimination of infection, novel tools need to be developed, including more efficacious drugs, vaccines, and/or antivectorial agents, new diagnostics for infection and assessment of drug efficacy, and markers for possible anthelmintic resistance. In addition, there is a need for the development of new formulations of some existing anthelmintics (e.g., paediatric formulations). To achieve ultimate elimination of helminth parasites, treatments for the above mentioned helminthiases, and for taeniasis and food-borne trematodiases, will need to be integrated with monitoring, education, sanitation, access to health services, and where appropriate, vector control or reduction of the parasite reservoir in alternative hosts. Based on an analysis of current knowledge gaps and identification of priorities, a research and development agenda for intervention tools considered necessary for control and elimination of human helminthiases is presented, and the challenges to be confronted are discussed

    Efficient in vitro RNA interference and immunofluorescence-based phenotype analysis in a human parasitic nematode, Brugia malayi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA interference (RNAi) is an efficient reverse genetics technique for investigating gene function in eukaryotes. The method has been widely used in model organisms, such as the free-living nematode <it>Caenorhabditis elegans</it>, where it has been deployed in genome-wide high throughput screens to identify genes involved in many cellular and developmental processes. However, RNAi techniques have not translated efficiently to animal parasitic nematodes that afflict humans, livestock and companion animals across the globe, creating a dependency on data tentatively inferred from <it>C. elegans</it>.</p> <p>Results</p> <p>We report improved and effective <it>in vitro </it>RNAi procedures we have developed using heterogeneous short interfering RNA (hsiRNA) mixtures that when coupled with optimized immunostaining techniques yield detailed analysis of cytological defects in the human parasitic nematode, <it>Brugia malayi</it>. The cellular disorganization observed in <it>B. malayi </it>embryos following RNAi targeting the genes encoding γ-tubulin, and the polarity determinant protein, PAR-1, faithfully phenocopy the known defects associated with gene silencing of their <it>C. elegans </it>orthologs. Targeting the <it>B. malayi </it>cell junction protein, AJM-1 gave a similar but more severe phenotype than that observed in <it>C. elegans</it>. Cellular phenotypes induced by our <it>in vitro </it>RNAi procedure can be observed by immunofluorescence in as little as one week.</p> <p>Conclusions</p> <p>We observed cytological defects following RNAi targeting all seven <it>B. malayi </it>transcripts tested and the phenotypes mirror those documented for orthologous genes in the model organism <it>C. elegans</it>. This highlights the reliability, effectiveness and specificity of our RNAi and immunostaining procedures. We anticipate that these techniques will be widely applicable to other important animal parasitic nematodes, which have hitherto been mostly refractory to such genetic analysis.</p

    The Immunomodulatory Role of Adjuvants in Vaccines Formulated with the Recombinant Antigens Ov-103 and Ov-RAL-2 against Onchocerca volvulus in Mice.

    Get PDF
    BACKGROUND: In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses. METHODOLOGY/ PRINCIPAL FINDINGS: Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen-specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2. CONCLUSIONS/SIGNIFICANCE: The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans
    corecore