5,603 research outputs found

    A Probabilistic Linear Genetic Programming with Stochastic Context-Free Grammar for solving Symbolic Regression problems

    Full text link
    Traditional Linear Genetic Programming (LGP) algorithms are based only on the selection mechanism to guide the search. Genetic operators combine or mutate random portions of the individuals, without knowing if the result will lead to a fitter individual. Probabilistic Model Building Genetic Programming (PMB-GP) methods were proposed to overcome this issue through a probability model that captures the structure of the fit individuals and use it to sample new individuals. This work proposes the use of LGP with a Stochastic Context-Free Grammar (SCFG), that has a probability distribution that is updated according to selected individuals. We proposed a method for adapting the grammar into the linear representation of LGP. Tests performed with the proposed probabilistic method, and with two hybrid approaches, on several symbolic regression benchmark problems show that the results are statistically better than the obtained by the traditional LGP.Comment: Genetic and Evolutionary Computation Conference (GECCO) 2017, Berlin, German

    Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.

    Get PDF
    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions

    Theoretical Study of Ag Interactions in Amorphous Silica RRAM Devices

    Get PDF
    In this study, Density Functional Theory (DFT) calculations were used to model the incorporation and diffusion of Ag in Ag/a-Si02/Pt resistive random-access memory (RRAM) devices. The Ag clustering mechanism is vital for understanding device operation and at this stage is unknown. In this paper an O vacancy (Vo) mediated cluster model is presented, where the Vo is identified as the principle site for Ag^{+} reduction. The Ag^{+} interstitial is energetically favored at the Fermi energies of Ag and Pt, indicating that Ag^{+} ions are not reduced at the Pt electrode via electron tunneling. Instead, Ag^{+} ions bind to Vo forming the [Ag/Vo]^{+} complex, reducing Ag^{+} via charge transfer from the Si atoms in the vacancy. The [Ag/Vo]^{+} complex is then able to trap an electron forming [Ag/Vo]^{0} at the Fermi energy of Pt. This complex is then able to act as a nucleation site for of Ag clustering with the formation of [Ag2/Vo]^{+} which is reduced by the above mechanism

    Spatial redistribution of irregularly-spaced Pareto fronts for more intuitive navigation and solution selection

    Get PDF
    A multi-objective optimization approach is o.en followed by an a posteriori decision-making process, during which the most appropriate solution of the Pareto set is selected by a professional in the .eld. Conventional visualization methods do not correct for Pareto fronts with irregularly-spaced solutions. However, achieving a uniform spread of solutions can make the decision-making process more intuitive when decision tools such as sliders, which represent the preference for each objective, are used. We propose a method that maps anm-dimensional Pareto front to an (m-1)-simplex and spreads out points to achieve a more uniform distribution of these points in the simplex while maintaining the local neighborhood structure of the solutions as much as possible. .is set of points can then more intuitively be navigated due to the more uniform distribution. We test our approach on a set of non-uniformly spaced 3D Pareto fronts of a real-world problem: deformable image registration of medical images. The results of these experiments are visualized as points in a triangle, showing that we indeed achieve a representation of the Pareto front with a near-uniform distribution of points where these are still positioned as expected, i.e., according to their quality in each of the objectives of interest

    Water UV-shielding in the terrestrial planet-forming zone: Implications for carbon dioxide emission

    Full text link
    Carbon Dioxide is an important tracer of the chemistry and physics in the terrestrial planet forming zone. Using a thermo-chemical model that has been tested against the mid-infrared water emission we re-interpret the CO2 emission as observed with Spitzer. We find that both water UV-shielding and extra chemical heating significantly reduce the total CO2 column in the emitting layer. Water UV-shielding is the more efficient effect, reducing the CO2 column by \sim 2 orders of magnitude. These lower CO2 abundances lead to CO2-to-H2O flux ratios that are closer to the observed values, but CO2 emission is still too bright, especially in relative terms. Invoking the depletion of elemental oxygen outside of the water mid-plane iceline more strongly impacts the CO2 emission than it does the H2O emission, bringing the CO2-to-H2O emission in line with the observed values. We conclude that the CO2 emission observed with Spitzer-IRS is coming from a thin layer in the photo-sphere of the disk, similar to the strong water lines. Below this layer, we expect CO2 not to be present except when replenished by a physical process. This would be visible in the 13^{13}CO2 spectrum as well as certain 12^{12}CO2 features that can be observed by JWST-MIRI.Comment: 8 pages, 4 figures, accepted for publication in ApJ

    Three Lyα Emitting Galaxies within a Quasar Proximity Zone at z ~ 5.8

    Get PDF
    Quasar proximity zones at z > 5.5 correspond to overdense and overionized environments. Galaxies found inside proximity zones can therefore display features that would otherwise be masked by absorption in the intergalactic medium. We demonstrate the utility of this quasar-galaxy synergy by reporting the discovery of the first three “proximate Lyα emitters” (LAEs) within the proximity zone of quasar J0836+0054 at z = 5.795 (Aerith A, B, and C). Aerith A, located behind the quasar with an impact parameter D^{\perp} = 278 \pm 8 pkpc, provides the first detection of an Lyα transverse proximity effect. We model the transmission and show that it constrains the onset of J0836ʼs quasar phase to 0.2Myr < 28Myr < t in the past. The second object, Aerith B at a distance D < 912 pkpc from the quasar, displays a bright and broad double-peaked Lyα emission line. The peak separation implies a low ionizing f_{esc} \leqslant 1%. We fit the Lyα line with an outflowing shell model, finding a typical central density log N_{HI}/cm^{-2} = 19.3_{-0.2}^{+0.8}, outflow velocity v_{out} = 16_{-11}^{+4}km s^{-1}, and gas temperature log T/K = 3.8_{-0.7}^{+0.8} compared to 2 < z < 3 analog LAEs. We detect object Aerith C via an Lyα emission line at z = 5.726. This corresponds with the edge of the quasar’s proximity zone (Dz < 0.02), suggesting that the proximity zone is truncated by a density fluctuation. Via the analyses conducted here, we illustrate how proximate LAEs offer unique insight into the ionizing properties of both quasars and galaxies during hydrogen reionization

    The nature of column boundaries in micro-structured silicon oxide nanolayers

    Get PDF
    Columnar microstructures are critical for obtaining good resistance switching properties in SiOx resistive random access memory (ReRAM) devices. In this work, the formation and structure of columnar boundaries are studied in sputtered SiOx layers. Using TEM measurements, we analyze SiOx layers in Me–SiOx–Mo heterostructures, where Me = Ti or Au/Ti. We show that the SiOx layers are templated by the Mo surface roughness, leading to the formation of columnar boundaries protruding from troughs at the SiOx/Mo interface. Electron energy-loss spectroscopy measurements show that these boundaries are best characterized as voids, which in turn facilitate Ti, Mo, and Au incorporation from the electrodes into SiOx. Density functional theory calculations of a simple model of the SiO2 grain boundary and column boundary show that O interstitials preferentially reside at the boundaries rather than in the SiO2 bulk. The results elucidate the nature of the SiOx microstructure and the complex interactions between the metal electrodes and the switching oxide, each of which is critically important for further materials engineering and the optimization of ReRAM devices

    Recent key developments in nanoscale reliability and failure analysis techniques for advanced nanoelectronics devices

    Get PDF
    Last decade has witnessed an aggressive scaling of CMOS technology nodes pushing it all the way down to sub-10nm and this scaling trend looks positive for the next two-three nodes as well down to 5nm. This push for scaling of the technology node has created a need for using material characterization techniques with (sub)nanometer probe resolution to characterize these advanced nanoelectronic devices - to observe and understand the underlying thermodynamics and kinetics of the physical phenomenon at the nanometer scale in real-time. Among these advanced characterization techniques, transmission election microscopy (TEM) and scanning probe microscopy (SPM), as well as the techniques derived from these, have become critical and instrumental to failure analysis and for evaluation of key design metrics for reliability studies. In this work, we present the different case studies using these two techniques which we have employed for studying both advanced logic and memory devices. High resolution TEM (HRTEM) has been used for both RRAM and gate oxide reliability studies due to its multiple compositional characterization capabilities with sub-nm resolution. TEM can routinely achieve a resolution around 0.1nm and thus can provide tremendous information related to structure (Diffraction Pattern) and composition (Electron Energy Loss Spectroscopy). Ex-situ TEM techniques (supported by Focused Ion Beam (FIB)) have allowed us to perform diverse electrical and thermal testing on devices. We have found concrete evidence of FinFET device degradation recently [1]. We have also employed in-situ TEM techniques (facilitated by scanning tunneling microscopy (STM) and the thermal holder) to observe the degradation behavior of metal-dielectric stacks in real-time [2]. The in-situ TEM technique has provided insight into the direct and solid time sequential evolution of failure behavior in RRAM devices. Additionally, 3D tomography characterization of the defect and failure spot has been acquired by tilting the sample and collecting the sequential images at different angles [3]. This technique of 3D tomography is a very powerful one for defect reorganization and for root cause analysis of failure mechanism. Conductive atomic force microscopy (CAFM) and STM are two techniques, belonging to a large pool of available SPM tools, which we have used for breakdown studies in ultra-thin HfO2 and other high-κ dielectrics as well as multi-layered fluorinated graphene (FG) stacks. With a resolution, down to ~10nm and ~0.1nm for CAFM and STM respectively under ultra-high vacuum (UHV) conditions, we have applied these tools to measure electrical properties (I-V and dI/dV) at grain and grain boundary spots in ultra-thin polycrystalline HfO2 dielectrics [4] as well as to understand the breakdown mechanism in FG stacks [5]. We have also explored the local spectroscopy capabilities (of both STM and CAFM) for the measurement of random telegraph noise (RTN) in blanket HfO2 films. Using bias dependent RTN measurements, it has been possible to quantify the position of the defect in the probed location of the dielectric. Interestingly, these dielectric breakdowns and RTN measurements at the nanoscale have also provided experimental evidence of defect clustering in polycrystalline dielectrics and possible existence of the metastable nature of oxygen vacancy (VO) defect in HfO2 respectively [6]. CAFM has also been explored to study the role of VO in HfO2 based RRAM stacks for ultra-low power memory applications where the signature of sub-quantum conductance based resistive switching has been experimentally observed [7]. We strongly believe that these tools and techniques would play an indispensable role in unveiling the underlying physics of the nanoscale physical phenomenon for existing as well as emerging materials and 2D/3D devices. References: [1] S. Mei et al., IEDM (2016). [2] K. L. Pey et al., IRPS (2010). [3] S. Mei et al., Unpublished. [4] K. Shubhakar et al., Micro. Engineering (2013). [5] A. Ranjan et al., IRPS (2017, Accepted). [6] A. Ranjan et al., IRPS (2016
    corecore