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ABSTRACT
A multi-objective optimization approach is o�en followed by an a
posteriori decision-making process, during which the most appro-
priate solution of the Pareto set is selected by a professional in the
�eld. Conventional visualization methods do not correct for Pareto
fronts with irregularly-spaced solutions. However, achieving a uni-
form spread of solutions can make the decision-making process
more intuitive when decision tools such as sliders, which represent
the preference for each objective, are used. We propose a method
that maps anm-dimensional Pareto front to an (m− 1)-simplex and
spreads out points to achieve a more uniform distribution of these
points in the simplex while maintaining the local neighborhood
structure of the solutions as much as possible. �is set of points
can then more intuitively be navigated due to the more uniform
distribution. We test our approach on a set of non-uniformly spaced
3D Pareto fronts of a real-world problem: deformable image reg-
istration of medical images. �e results of these experiments are
visualized as points in a triangle, showing that we indeed achieve a
representation of the Pareto front with a near-uniform distribution
of points where these are still positioned as expected, i.e., according
to their quality in each of the objectives of interest.
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1 INTRODUCTION
Many real-world problems are actually multi-objective, meaning
that multiple, o�en con�icting, objectives of interest arise and de-
cisions need to be taken in the presence of trade-o�s between the
objectives. Without having a clear notion of preferences among
these objectives a priori, the most commonly adopted approach
is multi-objective optimization [8]. Solving a multi-objective opti-
mization problem results in a set of solutions that can be considered
equally good, since they represent the optimal trade-o�s between
the objectives. �is set of solutions in the parameter space of the
optimization problem is called the Pareto set, and the set of solu-
tions in the objective space is called the Pareto front. Typically, a
user then has to select a solution from the acquired Pareto front
that best represents his/her preferences in terms of the objectives’
trade-o�s.

Naturally it follows that the way the Pareto front is presented to
the user plays an essential role in enabling the �nal decision-making
process. An appropriate Pareto front visualization should provide
the user the ability to explore e�ciently the entire objective space,
while capturing the structure of the Pareto front and the (local)
ordering between all solutions. Such a visualization can be straight-
forward for problems with two objectives, but presents challenges
for higher dimensions. Many interesting visualization techniques
have focused on visualization of Pareto fronts consisting of more
than three dimensions in order to enable insightful decision making,
using, e.g., level diagrams [2], self-organizing maps [7], parallel
coordinates [11], the prosection method [19], or a projection to a
two-dimensional (2D) [20] or three-dimensional (3D) surface [10].
Nonetheless, these methods do not address the challenge of solu-
tions on the Pareto front being indistinguishable, which is mostly a
problem for Pareto fronts that have a non-uniform distribution of
solutions across their surface. An example of a uniformly spaced
Pareto front (obtained from a benchmark problem), as opposed to
a non-uniformly spaced Pareto front (obtained from a real-world
problem), can be seen in Figure 1. Selecting a solution from the
la�er can be challenging, due to the fact that many solutions are
virtually indistinguishable from each other. �is can be a problem,
because solutions that are very close in objective space could rep-
resent very di�erent solutions in parameter space. Moreover, the

1697

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301640768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Bouter et. al.

0

0.5

1
0

0.5
1

0

0.5

1

-1

-0.8

-0.6

-0.4

-0.2

0
0 0.002 0.004 0.006 0.008 0.01

0

5

10

15

20

25

’approximation_set_generation_00100.dat’ u 4:5:6

Figure 1: Example of a uniformly spaced Pareto front of
a benchmark problem (le�) and a non-uniformly spaced
Pareto front from a real-world problem (right). Exploring
the local structure of the real-world Pareto front via an in-
teractive decision tool is potentially quite challenging.

remapping of a Pareto front for visualization purposes can even
lead to a larger number of points being indistinguishable, even
if such points were not close to each other in the original Pareto
front. �erefore, an ideal remapping of a Pareto front to a 2D space
should result in a representation where the solutions are be�er (i.e.,
more uniformly) distributed, while maintaining the characteristics
of the initial topology of the Pareto front and the (local) ordering
relations. �is remapped set of points could then be easily nav-
igated by using a set of trade-o� sliders, one for each objective,
which represent the relative preference for each objective. Since,
however, there is no mapping from a higher dimensional space to
a lower dimensional space that preserves 100% of local ordering
relations [13], this problem becomes a multi-objective optimiza-
tion problem itself. In this work, we therefore formulate this as a
problem with two objectives. To solve it, we use a Multi-Objective
Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm
(MO-RV-GOMEA) [5]. Although the proposed approach general-
izes to more than three dimensions, in this work we focus on the
3D case, for which the output of the algorithm also results in an
intuitively sensible 2D visualization. Moreover, we are intrinsi-
cally motivated by data obtained from a real-world, three-objective
optimization problem: Deformable Image Registration (DIR).

�e remainder of this paper is organized as follows. In Section
2, we illustrate the challenges related to the uniformly distributed
mapping of non-uniformly spaced sets of Pareto-optimal solutions.
In Section 3, we describe our methods of addressing these chal-
lenges, including the optimization objectives and MO-RV-GOMEA.
In Section 4, we describe our experimental setup, as well as our
benchmark problems and the problem of DIR. In Section 4.3, we
present our results, and in Section 5 we discuss our �ndings and
present our conclusions.

2 PROBLEM DESCRIPTION
We use the example displayed in Figures 2 and 3 to illustrate the
di�culties involved in achieving a su�ciently spread mapping of a
Pareto front while preserving the structure of the original Pareto
front as best as possible. �is be�er illustrates the reasoning behind
the use of a multi-objective approach to this problem. Figure 2
displays an example of a projection of a 3D Pareto front onto a
triangle. �is Pareto front contains a number of points that are
largely overlapping, making the selection of one of these individual

points very di�cult. Figure 3 then displays a fairly intuitive at-
tempt at achieving a larger spread between points while preserving
the structure of the original Pareto front. Because preservation of
the original structure is not clearly de�ned, we look at the follow-
ing three measures that are relevant for displaying the quality of
solutions in regard to other solutions that are visualized. �ese
measures of the mapped Pareto front should ideally be identical to
those of the original Pareto front.

(1) For each point, the ordering of Euclidean distances to each
other point.

(2) For each point, the set of k nearest neighbors, where k is a
small constant.

(3) For each vertex of the simplex, corresponding to the ex-
tremum of one objective, the ordering of the points based
on the distances from this vertex to these points.

Figure 2: Projection of an
arbitrary 3D Pareto front
onto a triangle.

Figure 3: Example of a re-
distribution of the points
in Figure 2.

Despite the seemingly intuitive spreading of points, all three
previously listed measures are in some way di�erent for Figure 2
and Figure 3, whereas they should ideally be similar. �e �rst two
measures have changed due to, among others, the point marked in
red having two di�erent nearest neighbors in the two �gures. �e
third measure has changed due to, among others, the green point
being further away from the bo�om le� vertex of the triangle than
the black point in Figure 2, but closer in Figure 3.

Figures 2 and 3 only show one example, but it is likely that no
su�cient spreading of the points is possible without the violation
of all three measures. Moreover, it seems very di�cult to de�ne a
di�erent meaningful measure of Pareto front structure that remains
constant when points are spread out. �is would allow the measure
to be used as a constraint while the spread between pairs of points
is maximized. Instead, violations of the rankings are seemingly
necessary to achieve a su�cient spread of points in the mapped
Pareto front, meaning that there is an inherent trade-o� between
the spread of points and the preservation of the Pareto front struc-
ture. We therefore avoid using a hard constraint or penalty value
for the preservation of the structure of the original Pareto front. Al-
ternatively, a weighted sum of objectives can be optimized, but this
will require the manual tuning of the weights, which is unintuitive
and problem speci�c.
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3 METHODS
An m-dimensional Pareto front PF of size n, normalized to the
range [0, 1]m is given as input. We assume, without loss of general-
ity, that in the original optimization problem all objectives need to
be minimized. We then construct a mapping of the points on the
input Pareto front to an (m − 1)-simplex. We consider two di�erent
representations: one where we aim to map the maximum of each
dimension to the region near one of the vertices of the simplex,
and one where we aim to map the minimum of each dimension to
the region near one of the vertices of the simplex. Both representa-
tions are valid and could be useful in di�erent scenarios, depending
on the shape of the input Pareto front, and possible preferences
regarding the decision-making process.

Points on the mapped surface (or in the mapped hypervolume
for high-dimensional problems) of the simplex must be su�ciently
spread in order to easily be individually selectable. At the same
time, the structure of the original Pareto front must be preserved
as much as possible. �ese two objectives are contradictive and no
weights can intuitively be de�ned, leading us to solve this problem
using a multi-objective optimization approach. �e two objectives
of interest are de�ned as a function of the set of points PF of
the input Pareto front. Each point pi ∈ PF is mapped to the
point p′i ∈ [0, 1]m−1. �e set of parameters of the optimization
problem consists of the m − 1 Cartesian coordinates of each p′i .
More speci�cally, any solution to this problem is represented by a
vector x of length ` = n(m − 1).

3.1 Multi-Objective Optimization
For the multi-objective approach used in this paper, the two ob-
jective functions of interest Fspread and Fstress are de�ned in this
section, which both need to be minimized. �e �rst objective func-
tion, Fspread, is aimed at the maximization of the distance between
each point and its nearest neighbor. �is problem is in general
known as the Circles-In-A-Square (CIAS) packing problem, which
is a quite di�cult continuous optimization problem when solved to
optimality [3]. We are however not interested in achieving optimal
spread of all points, because we only aim to achieve a spread that
is su�cient to spread out large clumps of points and prevents large
empty spaces in the mapped representation of the input Pareto
front. For this reason, we use a relaxed de�nition of the original
CIAS objective function, which is derived in Equation 1, based on
the p-norm, with x the vector of points and d (i, j ) the Euclidean
distance between points i and j.

FCIAS (x ) = arg max
x

{
min
i, j

d (i, j )

}
= arg min

x

{
max
i, j

1
d (i, j )

}

= arg min
x




lim
p→∞

p

√√√√ |x |−1∑
i=0

i−1∑
j=0

�����
1

d (i, j )

�����

p


= arg min
x




lim
p→∞

|x |−1∑
i=0

i−1∑
j=0

d (i, j )−p



(1)

�e objective function that is used in our optimization approach
is de�ned as Fspread in Equation 2, again with d (a,b) the Euclidean
distance between a and b. �e sum of pairwise distances with p = 4
is used, because the smoothness of this objective makes it easier
to optimize than an objective with a �at landscape, such as the
original de�nition of FCIAS.

Fspread =
n−1∑
i=0

i−1∑
j=0

d (p′i ,p
′
j )
−4 (2)

Although any of the measures introduced in Section 2 could be
used for optimization of the preservation of the original Pareto
front structure, all these measures are discrete, which will increase
the di�culty of their optimization. Instead we use the objective
function de�ned as Fstress in Equation 3, with d (a,b) again the
Euclidean distance between a and b. �is objective is continuous,
has a smooth landscape, and is based on the Sammon stress [17].
�e second term of Equation 3 has the purpose of mapping the
extreme points of the input Pareto front onto the space near the
corresponding vertex of the simplex. For this, we de�ne V as a
set of hyperplanes, where each Vj ∈ V de�nes a hyperplane. �e
hyperplane Vmin

j has the coordinate 0 in dimension j, and Vmax
j is

the hyperplane that has the coordinate 1 in dimension j . In Equation
3, Vmin

j and Vmax
j can be used for Vj , depending on which of the

two representations discussed in Section 3 is used. �e hyperplane
Vj is mapped onto the point V ′j , which uniquely corresponds to
one ofm vertices of the simplex.

Fstress =
2

n − 1

n−1∑
i=0

i−1∑
j=0

(
d (pi ,pj ) − d (p

′
i ,p
′
j )
)2

+
1
m

n−1∑
i=0

m−1∑
j=0

(
d (pi ,Vj ) − d (p

′
i ,V
′
j )

)2
(3)

To ensure that each point is mapped to a point inside the sim-
plex, a constraint value is used that is equal to the number of points
that is not inside the simplex. �e constraint domination [9] tech-
nique is used for constraint handling. �is means that a solution is
considered to dominate any solution that has a higher constraint
value.

3.2 MO-RV-GOMEA
For the optimization of the parameters that de�ne a mapping, we
use the recently introduced MO-RV-GOMEA [5], because Evolu-
tionary Algorithms (EAs) are known to be among the state of the
art for multi-objective optimization [8]. MO-RV-GOMEA has been
shown to perform be�er than well-known state-of-the-art EAs
[5], such as NSGA-II [9], especially when partial evaluations are
possible, which is the case here.

MO-RV-GOMEA is a model-based EA for the optimization of
real-valued variables. An adaptive elitist archive [14] is maintained
to keep track of non-dominated solutions. �e population is clus-
tered, because this is known to be highly bene�cial to �nd a good
spread of solutions across the entire optimal Pareto front [4, 15].
A fraction of the solutions in the population that rank the best
according to non-domination sorting [9] is selected. �e variation
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operator is based on a linkage model that explicitly de�nes subsets
of problem variables, so-called linkage sets, that are considered
to be dependent. A linkage model can either be learned during
optimization, in which case a model is learned for each cluster
separately, or it can be de�ned a priori, in which case it is �xed
throughout the optimization process and each cluster uses the same
linkage model. For each linkage set of each cluster, a multivariate
normal probability distribution is estimated with maximum likeli-
hood based on the selection. �e estimated probability distribution
of a linkage set is used to sample new values for the parameters
included in this linkage set, which are inserted into existing solu-
tions in the population. Only if such a modi�cation of a subset
of variables is considered to be an improvement, the modi�cation
is accepted. Otherwise, the solution is returned to its previous
state. Partial modi�cations of solutions can be evaluated e�ciently
through so-called partial evaluations, which e�ciently evaluate the
modi�ed objective values of a solution based on the modi�cation of
the variables. �e probability distribution of a linkage set is newly
estimated each generation, but it is scaled by a factor that is adapted
based on improvements that are found and where they are found.
We refer the interested reader to the relevant literature for further
details [5].

To e�ciently solve the objectives de�ned in Equations 2 and 3,
we use a linkage model where each linkage set consists of all (m−1)
Cartesian coordinates of a single point pi ∈ PF . �is linkage model
allows for e�cient partial evaluations, because any objective value
can e�ciently be updated a�er the coordinates of one point are
modi�ed. Half of the population of MO-RV-GOMEA is initialized
uniformly random in the (m − 1)-simplex, while the other half of
the population is initialized based on the coordinates of each point
in the input Pareto front. Speci�cally, each solution in the la�er half
of the population is initialized such that each point pi ∈ PF maps
to the point p′i for which the barycentric weight of the jth vertex of
the simplex is pi [j] ·U (0, 1), where pi [j] is the coordinate of pi in
dimension j . �is la�er half of the population can improve the speed
of optimization due to more targeted initialization, while the former
half of the population prevents premature convergence in rare
cases where the targeted initialization procedure is unsuccessful at
�nding reasonable initial solutions.

4 EXPERIMENTS
We test the performance of our method by applying it to a set of
3D Pareto fronts. �e results of these experiments can easily be
visualized, because each 3D Pareto front is mapped to a 2-simplex,
i.e., a triangle. Each point on the resulting mapping of a Pareto front
is then color coded according to its normalized values in each of
the dimensions of the original Pareto front. Speci�cally, each point
is assigned an RGB color with the intensity of red corresponding
to its coordinate in the x-dimension, the intensity of green corre-
sponding to its coordinate in the y-dimension, and the intensity
of blue corresponding to its coordinate in the z-dimension. �is
simultaneously allows for a visual representation of the degree by
which the structure of the original Pareto front is preserved, and
the degree by which points are spread out.

We perform two experiments for each benchmark problem intro-
duced in Section 4.1, one where the maximum of each dimension is

mapped to a vertex of the triangle and one where the minimum of
each dimension is mapped to a vertex of the triangle. A time limit
of one hour is used for each experiment, and each experiment is
performed on a desktop computer with an Intel Core i7-2600 CPU
@ 3.40GHz.

4.1 Benchmark Problems
A number of irregularly-spaced Pareto fronts were previously ob-
tained by taking a multi-objective approach to the real-world prob-
lem known as DIR, which is discussed in more detail in Section 4.2.
�ese benchmark problems are referred to as DIR1 through DIR10.
A 3D sca�er plot of each DIR benchmark problem is displayed in the
le�most column of Figures 6 and 7, where each point is color coded
according to the scheme introduced in Section 4. �e benchmark
problems consist of a number of points between approximately 400
and 1200 points, but a random subset of 100 points was used for
the purpose of clearer visualization and faster optimization.

4.2 Deformable image registration
DIR [18] is a key tool in several medical processes, e.g., in radio-
therapy [12]. DIR has a lot of potential since it can be used for
radiotherapy planning as well as surgical planning and treatment
response assessment [6]. However, DIR presents several challenges
which limit its wider application in clinical practice.

Solving a DIR problem entails �nding the optimal non-linear
transformation to align two images, i.e., the optimal spatial cor-
respondence between points in a so-called moving image and the
reference image. For most general-purpose registration methods,
DIR is formulated as a single-objective optimization problem, where
the cost function to be optimized is a linear combination of terms
that express objectives of interest. �ese objectives most o�en
describe the dissimilarity between the images that needs to be min-
imized, but also the deformation magnitude. Although in general a
certain amount of deformation is necessary in order to achieve a
good match, and thereby a low value for the dissimilarity, too much
deformation can result in physically incorrect deformations. �ere-
fore, penalizing the deformation magnitude ensures avoiding such
unwanted deformations. Depending on the type of registration
problem, more objectives can be added; for example, for the most
challenging registration problems which involve large anatomical
changes, guidance information in the form of a third objective can
help the registration algorithm; further, objectives which enforce
local rigidity (i.e., not allowing deformation of certain regions such
as bony anatomy) can be added.

However, this single-objective formulation presents a challenge,
as the weights associated with the objectives that de�ne the lin-
ear combination need to be determined beforehand, along with
multiple other registration-speci�c parameters. �is results in a
time-consuming process, since the interplay between parameters,
objectives of interest, and registration outcome is very complex for
challenging registration problems, and the optimal con�guration of
parameters can be very problem-speci�c, leading to multiple trial-
and-error a�empts for each problem separately. Recently, multi-
objective optimization approaches for DIR have been introduced,
either by directly �nding the optimal transformation that aligns
the two images [1], or by optimizing the parameters (including
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Figure 4: An example of a DIR problem. Le�: slice of 3D
proneMRI (moving image), right: 3D supine MRI (reference
image).

the weights) of existing single-objective registration so�ware [16].
In either case, these multi-objective approaches remove the need
for prede�ning sets of parameters, resulting in a Pareto front of
registration outcomes, which is then potentially navigable by an
expert a posteriori, while immediately seeing the associated DIR
outcomes.

In this work, using the aforementioned multi-objective approach
that optimizes the weights associated with the objectives of an
existing registration method, we acquired ten Pareto fronts of ten
instances of a very challenging DIR problem: aligning breast Mag-
netic Resonance Imaging (MRI) scans of patients (in this study,
healthy volunteers) acquired in a prone (i.e., lying face down) to a
supine position (i.e., lying face up). Solving this registration prob-
lem can be useful in surgical planning for breast cancer patients that
undergo breast-conserving surgery. In standard clinical practice,
contrast-enhanced prone MRI is acquired to aid diagnosis, since
supine MRI su�ers from breathing motion artifacts which do not
allow acquisition with contrast enhancement. By registering, how-
ever, the prone MRI to a non-contrast-enhanced MRI of a patient
in supine position, pre-operative information is related to the intra-
operative se�ing, where the patient is also in a supine position.
�is can lead to be�er tumor localization during surgery, reducing
the chances of local recurrence and improving cosmetic outcome.
However, the large deformation that the breast undergoes between
prone and supine positioning makes this DIR problem very hard.
For this reason, for this DIR problem not only dissimilarity and
deformation magnitude were optimized, but also guidance infor-
mation is exploited by minimizing the distance between marker
locations in the moving and reference image that were a�ached on
the breast of the volunteer. �is resulted in ten 3D Pareto fronts.
An example of a DIR problem can be seen in Figure 4.

�e very di�erent scale of these three objectives, as well as the
fact that dissimilarity and guidance error are not always necessarily
con�icting, results in highly non-uniform Pareto fronts (see, e.g.,
Figure 1 right) . Another reason for an uneven distribution is possi-
bly the di�erence in optimization di�culty of the three objectives.
�e dissimilarity objective is a highly non-convex function, with
a lot of local minima, whereas the objectives that describe defor-
mation and guidance information are convex. Each solution on the
Pareto front represents a di�erently deformed image. �erefore, the
di�erences between the deformed images, albeit probably small be-
tween solutions which are very close to each other, are potentially

clinically relevant depending on the DIR application, and therefore,
they should be distinguishable and navigable for the user.

4.3 Experimental Results
Because we solve our problem using a multi-objective approach,
the result of the optimization is itself actually a Pareto front of
solutions with di�erent trade-o�s for Fspread and Fstress. In Figure 5
we show the output Pareto front for the input Pareto front of DIR1
(shown in Figure 6), along with visualized solutions from di�erent
regions of the output Pareto front. Figures 5b and 5d are the best
solutions in terms of Fspread and Fstress, respectively. �e fact that
these solutions are optimal in one objective also means that they
are the worst solution of the Pareto front in terms of the other
objective. Figures 5b and 5d make it evident that these solutions
are both not desirable, i.e., Figure 5b shows a distribution of points
where similarly colored points are not mapped to the same region of
the triangle, and Figure 5d shows large clumps of indistinguishable
points. Rather, a solution from a non-extreme region of the Pareto
front should be selected, as shown in Figure 5c. Automatic selection
of a solution from the Pareto front could be performed based on,
e.g., a linear combination of weights of the two objectives, or a
region of interest on the Pareto front, which would also mean that
the problem could be solved single-objectively. Automatic selection
is however di�cult to tune such that it selects a proper solution
for each benchmark problem, and is moreover not the focus of this
work. Solutions presented in this section are therefore manually
selected from the Pareto set based on visual preference.

 0

 20

 40

108 1014 1020

F
st
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Fspread

(a) Output Pareto front.

xmax ymax

zmax

(b) Optimal spread.

xmax ymax

zmax

(c) Selected solution.

xmax ymax

zmax

(d) Optimal stress.

Figure 5: Output Pareto front in Figure 5a, with the marked
solutions from le� to right displayed in Figures 5b to 5d.

In Figures 6 and 7, we display the results of the experiments. �e
le�most column shows 3D sca�er plots of the input Pareto fronts.
�e second column from the le� shows the output Pareto fronts of
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both optimization approaches, i.e., where either the maximum or
the minimum of of each dimension is directed towards one vertex of
the simplex. In case the maximum of each dimension is directed to
the vertices,Vmax

j is used forVj in Equation 3. In case the minimum
of each dimension is directed to the vertices, Vmin

j is used for Vj in
Equation 3. �e position of the selected solutions, displayed in the
two rightmost columns, are denoted on the output Pareto fronts.

We see that the points in Figures 6 and 7 are all spread out near-
uniformly, and the points are clearly positioned in regions near
points with similar colors, i.e., similar objective values. Moreover,
points are correctly placed in the region of the triangle that corre-
sponds to their coordinates in the original Pareto front, e.g., green
points were originally located near (0, 1, 0) and should therefore be
mapped to the region near ymax, or a region opposing ymin.

5 DISCUSSION AND CONCLUSIONS
We have introduced a method for the mapping of anym-dimensional
Pareto front to an (m−1)-simplex, achieving a more uniform spread
of points that still accurately represents the partial ordering of qual-
ity of the associated solutions in each of the objectives of interest.
A uniform spread of points is bene�cial to the decision-making pro-
cess when solutions are initially assumed to be of equal preference,
because this makes each point individually distinguishable. More-
over, if a decision-making tool such as a set of sliders to control
the relative preference of each objective is used, a uniform spread
of points will avoid navigation through very dense or sparse re-
gions of the solution space. Sparse regions are di�cult to navigate
through, because many possible objective weights in such regions
will correspond to the same solution. Dense regions of the solution
space make it di�cult to distinguish each solution while in the
parameter space these solutions may well be signi�cantly di�erent.

A time limit of one hour was used for the experiments in this
paper, but the key contribution of this paper is the general idea
of solving the remapping problem multi-objectively rather than a
perfectly stream-lined algorithm. A variety of methods could be
applied to improve the e�ciency of the optimization. For instance,
a multi-resolution approach could be used that starts by performing
the optimization on a small, diverse, subset of points on the original
Pareto front. Remaining points are then incrementally added at
a later stage of the optimization procedure, and these points can
be initialized around already mapped points that are close in the
original Pareto front. Secondly, more advanced methods for the
initialization of the population might be possible, which would
speed up the optimization by providing be�er initial solutions.

An alternative approach to the redistribution of Pareto fronts
could entail the formulation of the problem as a discrete permu-
tation problem. With such an approach, a Pareto front would be
mapped to a set of uniformly distributed locations on the simplex,
one for each point on the input Pareto front. �e problem then
consists of �nding the best one-to-one mapping of points on the
input Pareto fronts to locations on the simplex. Using this approach,
a single-objective optimization method can be used, but it is not
known whether this approach is capable of producing good results
for any possible input Pareto front.

We have tested our approach on a set of 3D Pareto fronts from
the real-world problem known as DIR. Results show that we are well

able to �nd 2D representations of these Pareto fronts where each
point is easily distinguishable and points are located at an intuitive
position with respect to their quality in each of the objectives of
interest, enabling the design and use of e�ective decision support
tools, e.g., in the case of the DIR problem in this paper.
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Figure 6: Results of benchmark problems DIR1 through DIR5. �e le�most column shows a 3D scatter plot of the input Pareto
front. �e second column shows output Pareto fronts of the approach with maximum values mapped to the vertices of the
triangle (in purple) and the approach with minimum values mapped to the vertices of the triangle (in green). In this plot, the
solutions displayed in the two rightmost columns are marked by a red cross.
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Figure 7: Results of benchmark problems DIR6 throughDIR10. �e le�most column shows a 3D scatter plot of the input Pareto
front. �e second column shows output Pareto fronts of the approach with maximum values mapped to the vertices of the
triangle (in purple) and the approach with minimum values mapped to the vertices of the triangle (in green). In this plot, the
solutions displayed in the two rightmost columns are marked by a red cross.
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