505 research outputs found

    An airport wind shear detection and warning system using Doppler radar: A feasibility study

    Get PDF
    A feasibility study was conducted to determine whether ground based Doppler radar could measure the wind along the path of an approaching aircraft with sufficient accuracy to predict aircraft performance. Forty-three PAR approaches were conducted, with 16 examined in detail. In each, Doppler derived longitudinal winds were compared to aircraft measured winds; in approximately 75 percent of the cases, the Doppler and aircraft winds were in acceptable agreement. In the remaining cases, errors may have been due to a lack of Doppler resolution, a lack of co-location of the two sampling volumes, the presence of eddy or vortex like disturbances within the pulse volume, or the presence of point targets in antenna side lobes. It was further concluded that shrouding techniques would have reduced the side lobe problem. A ground based Doppler radar operating in the optically clear air, provides the appropriate longitudinal winds along an aircraft's intended flight path

    Mechanical Mixing in Nonlinear Nanomechanical Resonators

    Full text link
    Nanomechanical resonators, machined out of Silicon-on-Insulator wafers, are operated in the nonlinear regime to investigate higher-order mechanical mixing at radio frequencies, relevant to signal processing and nonlinear dynamics on nanometer scales. Driven by two neighboring frequencies the resonators generate rich power spectra exhibiting a multitude of satellite peaks. This nonlinear response is studied and compared to nthn^{th}-order perturbation theory and nonperturbative numerical calculations.Comment: 5 pages, 7 figure

    Adiabatic steering and determination of dephasing rates in double dot qubits

    Full text link
    We propose a scheme to prepare arbitrary superpositions of quantum states in double quantum--dots irradiated by coherent microwave pulses. Solving the equations of motion for the dot density matrix, we find that dephasing rates for such superpositions can be quantitatively infered from additional electron current pulses that appear due to a controllable breakdown of coherent population trapping in the dots.Comment: 5 pages, 4 figures. To appear in Phys. Rev.

    Spin blockade in ground state resonance of a quantum dot

    Full text link
    We present measurements on spin blockade in a laterally integrated quantum dot. The dot is tuned into the regime of strong Coulomb blockade, confining ~ 50 electrons. At certain electronic states we find an additional mechanism suppressing electron transport. This we identify as spin blockade at zero bias, possibly accompanied by a change in orbital momentum in subsequent dot ground states. We support this by probing the bias, magnetic field and temperature dependence of the transport spectrum. Weak violation of the blockade is modelled by detailed calculations of non-linear transport taking into account forbidden transitions.Comment: 4 pages, 4 figure

    Superposition of photon- and phonon- assisted tunneling in coupled quantum dots

    Full text link
    We report on electron transport through an artificial molecule formed by two tunnel coupled quantum dots, which are laterally confined in a two-dimensional electron system of an Alx_xGa1x_{1-x}As/GaAs heterostructure. Coherent molecular states in the coupled dots are probed by photon-assisted tunneling (PAT). Above 10 GHz, we observe clear PAT as a result of the resonance between the microwave photons and the molecular states. Below 8 GHz, a pronounced superposition of phonon- and photon-assisted tunneling is observed. Coherent superposition of molecular states persists under excitation of acoustic phonons.Comment: 5 pages, 4 figure

    Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator

    Full text link
    We present measurements on microwave spectroscopy on a double quantum dot with an on-chip microwave source. The quantum dots are realized in the two-dimensional electron gas of an AlGaAs/GaAs heterostructure and are weakly coupled in series by a tunnelling barrier forming an 'ionic' molecular state. We employ a Josephson oscillator formed by a long Nb/Al-AlOx_x/Nb junction as a microwave source. We find photon-assisted tunnelling sidebands induced by the Josephson oscillator, and compare the results with those obtained using an externally operated microwave source.Comment: 6 pages, 4 figure

    Nuclear spin relaxation probed by a single quantum dot

    Full text link
    We present measurements on nuclear spin relaxation probed by a single quantum dot in a high-mobility electron gas. Current passing through the dot leads to a spin transfer from the electronic to the nuclear spin system. Applying electron spin resonance the transfer mechanism can directly be tuned. Additionally, the dependence of nuclear spin relaxation on the dot gate voltage is observed. We find electron-nuclear relaxation times of the order of 10 minutes

    Pseudo-spin Kondo effect versus hybridized molecular states in parallel Double Quantum Dots

    Full text link
    A two quantum-dot device is coupled in parallel for studying the competition between the pseudo-spin Kondo effect and strongly hybridized molecular states. Cryogenic measurements are performed in the regime of weak coupling of the two dots to lead states under linear transport conditions. Detailed simulations verify the finding of the transition between the two different regimes.Comment: 14 pages, 3 figure

    Electron-hole bilayer quantum dots: Phase diagram and exciton localization

    Full text link
    We studied a vertical ``quantum dot molecule'', where one of the dots is occupied with electrons and the other with holes. We find that different phases occur in the ground state, depending on the carrier density and the interdot distance. When the system is dominated by shell structure, orbital degeneracies can be removed either by Hund's rule, or by Jahn-Teller deformation. Both mechanisms can lead to a maximum of the addition energy at mid-shell. At low densities and large interdot distances, bound electron-hole pairs are formed.Comment: 10 pages, 3 figure
    corecore