13 research outputs found

    Detection of Histone H2AX Phosphorylation on Ser-139 as an Indicator of DNA Damage

    No full text
    This unit describes immunocytochemical detection of histone H2AX phosphorylated on Ser-139 (gammaH2AX) to reveal DNA damage, particularly when the damage involves the presence of DNA double-strand breaks (DSBs). These breaks often result from DNA damage induced by ionizing radiation or by treatment with anticancer drugs such as DNA topoisomerase inhibitors. Furthermore, DSBs are generated in the course of DNA fragmentation during apoptosis. The unit presents strategies to distinguish radiation- or drug-induced DNA breaks from those intrinsically formed in untreated cells or associated with apoptosis. The protocol describes immunocytochemical detection of gammaH2AX combined with measurement of DNA content to identify cells that have DNA damage and concurrently to assess their cell-cycle phase. The detection is based on indirect immunofluorescence using FITC- or Alexa Fluor 488-labeled antibody, with DNA counterstained with propidium iodide and cellular RNA removed with RNase A. (c) 2019 by John Wiley & Sons, Inc

    European first-year university students accept evolution but lack substantial knowledge about it: a standardized European cross-country assessment

    No full text
    Background: Investigations of evolution knowledge and acceptance and their relation are central to evolution education research. Ambiguous results in this field of study demonstrate a variety of measuring issues, for instance differently theorized constructs, or a lack of standardized methods, especially for cross-country comparisons. In particular, meaningful comparisons across European countries, with their varying cultural backgrounds and education systems, are rare, often include only few countries, and lack standardization. To address these deficits, we conducted a standardized European survey, on 9200 first-year university students in 26 European countries utilizing a validated, comprehensive questionnaire, the “Evolution Education Questionnaire”, to assess evolution acceptance and knowledge, as well as influencing factors on evolution acceptance. Results: We found that, despite European countries’ different cultural backgrounds and education systems, European first-year university students generally accept evolution. At the same time, they lack substantial knowledge about it, even if they are enrolled in a biology-related study program. Additionally, we developed a multilevel-model that determines religious faith as the main influencing factor in accepting evolution. According to our model, knowledge about evolution and interest in biological topics also increase acceptance of evolution, but to a much lesser extent than religious faith. The effect of age and sex, as well as the country’s affiliation, students’ denomination, and whether or not a student is enrolled in a biology-related university program, is negligible. Conclusions: Our findings indicate that, despite all their differences, most of the European education systems for upper secondary education lead to acceptance of evolution at least in university students. It appears that, at least in this sample, the differences in knowledge between countries reflect neither the extent to which school curricula cover evolutionary biology nor the percentage of biology-related students in the country samples. Future studies should investigate the role of different European school curricula, identify particularly problematic or underrepresented evolutionary concepts in biology education, and analyze the role of religious faith when teaching evolution. © 2021, The Author(s)
    corecore