1,169 research outputs found

    Multiloop String-Like Formulas for QED

    Full text link
    Multiloop gauge-theory amplitudes written in the Feynman-parameter representation are poised to take advantage of two important developments of the last decade: the spinor-helicity technique and the superstring reorganization. The former has been considered in a previous article; the latter will be elaborated in this paper. We show here how to write multiloop string-like formulas in the Feynman-parameter representation for any process in QED, including those involving other non-electromagnetic interactions. The general connection between the Feynman-parameter approach and the superstring/first-quantized approach is discussed. In the special case of a one-loop multi-photon amplitude, these formulas reduce to the ones obtained by the superstring and the first quantized methods. The string-like formulas exhibits a simple gauge structure which makes the Ward-Takahashi identity apparent, and enables the integration-by-parts technique of Bern and Kosower to be applied, so that gauge-invariant parts can be extracted diagram-by-diagram with the seagull vertex neglected.Comment: 25 pages in Plain Tex, plus four figures in a postscript file; McGill/92-5

    Charge asymmetry in hadroproduction of heavy quarks

    Get PDF
    A sizeable difference in the differential production cross section of top and antitop quarks, respectively, is predicted for hadronically produced heavy quarks. It is of order αs\alpha_s and arises from the interference between charge odd and even amplitudes respectively. For the TEVATRON it amounts to approximately 5-10% in the region where the cross section is large and could therefore be measured in the next round of experiments. At the LHC the asymmetry can be studied by selecting appropriately chosen kinematical regions.Comment: LaTeX, 5pp, 5 figures, uses revtex. The complete paper, including figures, is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints/ Final version as published in Phys.Rev.Let

    Heavy Top Quark Searches in the Di-Lepton Mode at the Tevatron

    Full text link
    We present the results of a detailed study of the effects of bb-tagging on the heavy top-quark signal and backgrounds for the modes of the di-lepton plus two high transverse energy jets at the Fermilab Tevatron. The general characteristics of the heavy top-quark signal events are also discussed so that a comparison can be made between bb-tagging and imposing stringent kinematical cuts to eliminate backgrounds.Comment: uses PHYZZX and TABLES macros, 10 pages, four figures not included (available by request), FERMILAB-Pub-93/105-

    A dual lagrangian for non-Abelian tensor gauge fields

    Full text link
    For non-Abelian tensor gauge fields of the lower rank we have found an alternative expression for the field strength tensors, which transform homogeneously with respect to the complementary gauge transformations and allow us to construct the dual Lagrangian.Comment: 13 pages, LaTex fil

    Finite calculation of divergent selfenergy diagrams

    Full text link
    Using dispersive techniques, it is possible to avoid ultraviolet divergences in the calculation of Feynman diagrams, making subsequent regularization of divergent diagrams unnecessary. We give a simple introduction to the most important features of such dispersive techniques in the framework of the so-called finite causal perturbation theory. The method is also applied to the 'divergent' general massive two-loop sunrise selfenergy diagram, where it leads directly to an analytic expression for the imaginary part of the diagram in accordance with the literature, whereas the real part can be obtained by a single integral dispersion relation. It is pointed out that dispersive methods have been known for decades and have been applied to several nontrivial Feynman diagram calculations.Comment: 15 pages, Latex, one figure, added reference

    Knowledge integration by thinking along

    Get PDF
    Organizing depends on the integration of specialized knowledge that lies distributed across individuals. There are benefits from specialization, and, yet, the integration of knowledge across boundaries is critical for organizational vitality. How do organizations benefit from knowledge that lies in different domains without having to transfer knowledge? This paper describes results of two exploratory ethnographic studies of knowledge integration in industrial research organizations. It introduces a knowledge integration mechanism - ‘thinking along’ – that has not received much attention by researchers before. Thinking along is a mechanism that allows for knowledge integration without the need for transfer. As a consequence, benefits of specialization obtain even as knowledge from one domain informs knowledge from another. The paper describes how researchers use thinking along to integrate knowledge within and across boundaries. It concludes with implications for knowledge management and future research

    Four-pion production in tau decays and e+e- annihilation: an update

    Full text link
    An improved description of four-pion production in electron-positron annihilation and in tau lepton decays is presented. The model amplitude is fitted to recent data from BaBar which cover a wide energy range and which were obtained exploiting the radiative return. Predicting tau decay distributions from e+e- data and comparing these predictions with ALEPH and CLEO results, the validity of isospin symmetry is confirmed within the present experimental errors. A good description of two- and three-pion sub-distributions is obtained. Special emphasis is put on the predictions for omega pi (-> pi+pi-pi0) in e+e- annihilation and in tau decay. The model amplitude is implemented in the Monte Carlo generator PHOKHARA.Comment: a few typos correcte

    Data taking strategy for the phase study in ψK+K\psi^{\prime} \to K^+K^-

    Full text link
    The study of the relative phase between strong and electromagnetic amplitudes is of great importance for understanding the dynamics of charmonium decays. The information of the phase can be obtained model-independently by fitting the scan data of some special decay channels, one of which is ψK+K\psi^{\prime} \to K^{+}K^{-}. To find out the optimal data taking strategy for a scan experiment in the measurement of the phase in ψK+K\psi^{\prime} \to K^{+} K^{-}, the minimization process is analyzed from a theoretical point of view. The result indicates that for one parameter fit, only one data taking point in the vicinity of a resonance peak is sufficient to acquire the optimal precision. Numerical results are obtained by fitting simulated scan data. Besides the results related to the relative phase between strong and electromagnetic amplitudes, the method is extended to analyze the fits of other resonant parameters, such as the mass and the total decay width of ψ\psi^{\prime}.Comment: 13 pages, 7 figure

    Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb

    Full text link
    We demonstrate a technique for frequency measurements of UV transitions with sub-MHz precision. The frequency is measured using a ring-cavity resonator whose length is calibrated against a reference laser locked to the D2D_2 line of 87^{87}Rb. We have used this to measure the 398.8 nm 1S01P1{^1S}_0 \leftrightarrow {^1P}_1 line of atomic Yb. We report isotope shifts of all the seven stable isotopes, including the rarest isotope 168^{168}Yb. We have been able to resolve the overlapping 173^{173}Yb(F=3/2F = 3/2) and 172^{172}Yb transitions for the first time. We also obtain high-precision measurements of excited-state hyperfine structure in the odd isotopes, 171^{171}Yb and 173^{173}Yb. The measurements resolve several discrepancies among earlier measurements.Comment: 7 pages, 6 figure
    corecore