6,542 research outputs found
Si-induced superconductivity and structural transformations in DyRh4B4
DyRh4B4 has been known to crystallize in the primitive tetragonal
(pt)-structure and to exhibit a ferromagnetic transition at 12 K, the highest
magnetic transition temperature in the entire series of the RRh4B4 materials
[1]. We show here that our silicon-added samples of the nominal composition
DyRh4B4Si0.2 exhibit superconductivity below Tc ~ 4.5 K and an
antiferromagnetic transition below TN ~ 2.7 K. The 12 K transition observed in
the pt-DyRh4B4 is completely suppressed. Our annealed samples mainly consist of
domains of the chemical composition DyRh3.9B4.2Si0.08. These domains contain
two crystallographic phases belonging to the body-centred tetragonal
(bct)-structure and the orthorhombic (o)-structure. We have reasons to suggest
that superconductivity and antiferromagnetic ordering arise from bct- DyRh4B4
phase and, therefore, coexist below TN ~ 2.7 K.Comment: 11 pages, 6 figures, Accepted for publication in Journal of Alloys
and Compound
Magnetic anomalies in single crystalline ErPd2Si2
Considering certain interesting features in the previously reported 166Er
Moessbauer effect and neutron diffraction data on the polycrystalline form of
ErPd2Si2 crystallizing in ThCr2Si2-type tetragonal structure, we have carried
out magnetic measurements (1.8 to 300 K) on the single crystalline form of this
compound. We observe significant anisotropy in the absolute values of
magnetization (indicating that the easy axis is c-axis) as well as in the
features due to magnetic ordering in the plot of magnetic susceptibility (chi)
versus temperature (T) at low temperatures. The chi(T) data reveal that there
is a pseudo-low dimensional magnetic order setting in at 4.8 K, with a
three-dimensional antiferromagnetic ordering setting in at a lower temperature
(3.8 K). A new finding in the chi(T) data is that, for H//, but not for
H//, there is a broad shoulder in the range 8-20 K, indicative of the
existence of magnetic correlations above 5 K as well, which could be related to
the previously reported slow-relaxation-dominated Moessbauer spectra.
Interestingly, the temperature coefficient of electrical resistivity is found
to be isotropic; no feature due to magnetic ordering could be detected in the
electrical resistivity data at low temperatures, which is attributed to
magnetic Brillioun-zone boundary gap effects. The results reveal complex nature
of the magnetism of this compound
Striking Photospheric Abundance Anomalies in Blue Horizontal-Branch Stars in Globular Cluster M13
High-resolution optical spectra of thirteen blue horizontal-branch (BHB)
stars in the globular cluster M13 show enormous deviations in element
abundances from the expected cluster metallicity. In the hotter stars (T_eff >
12000 K), helium is depleted by factors of 10 to 100 below solar, while iron is
enhanced to three times the solar abundance, two orders of magnitude above the
canonical metallicity [Fe/H] ~= -1.5 dex for this globular cluster. Nitrogen,
phosphorus, and chromium exhibit even more pronounced enhancements, and other
metals are also mildly overabundant, with the exception of magnesium, which
stays very near the expected cluster metallicity. These photospheric anomalies
are most likely due to diffusion --- gravitational settling of helium, and
radiative levitation of the other elements --- in the stable radiative
atmospheres of these hot stars. The effects of these mechanisms may have some
impact on the photometric morphology of the cluster's horizontal branch and on
estimates of its age and distance.Comment: 11 pages, 1 Postscript figure, uses aaspp4.sty, accepted for
publication in ApJ Letter
Rotations and Abundances of Blue Horizontal-Branch Stars in Globular Cluster M15
High-resolution optical spectra of eighteen blue horizontal-branch (BHB)
stars in the globular cluster M15 indicate that their stellar rotation rates
and photospheric compositions vary strongly as a function of effective
temperature. Among the cooler stars in the sample, at Teff ~ 8500 K, metal
abundances are in rough agreement with the canonical cluster metallicity, and
the v sin i rotations appear to have a bimodal distribution, with eight stars
at v sin i < 15 km/s and two stars at v sin i ~ 35 km/s. Most of the stars at
Teff > 10000 K, however, are slowly rotating, v sin i < 7 km/s, and their iron
and titanium are enhanced by a factor of 300 to solar abundance levels.
Magnesium maintains a nearly constant abundance over the entire range of Teff,
and helium is depleted by factors of 10 to 30 in three of the hotter stars.
Diffusion effects in the stellar atmospheres are the most likely explanation
for these large differences in composition. Our results are qualitatively very
similar to those previously reported for M13 and NGC 6752, but with even larger
enhancement amplitudes, presumably due to the increased efficiency of radiative
levitation at lower intrinsic [Fe/H]. We also see evidence for faster stellar
rotation explicitly preventing the onset of the diffusion mechanisms among a
subset of the hotter stars.Comment: 11 pages, 1 figure, 1 table, accepted to ApJ
The 6 minute walk in idiopathic pulmonary fibrosis: longitudinal changes and minimum important difference
The response characteristics of the 6 minute walk test (6MWT) in studies of idiopathic pulmonary fibrosis (IPF) are only poorly understood, and the change in walk distance that constitutes the minimum important difference (MID) over time is unknown
The Standard Model on Non-Commutative Space-Time: Electroweak Currents and Higgs Sector
In this article we review the electroweak charged and neutral currents in the
Non-Commutative Standard Model (NCSM) and compute the Higgs and Yukawa parts of
the NCSM action. With the aim to make the NCSM accessible to phenomenological
considerations, all relevant expressions are given in terms of physical fields
and Feynman rules are provided.Comment: 33 pages, axodraw.sty; shortened, comments and references added,
version to appear in EPJ
Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study
Magnetic materials are usually divided into two classes: those with localised
magnetic moments, and those with itinerant charge carriers. We present a
comprehensive experimental (spectroscopic ellipsomerty) and theoretical study
to demonstrate that these two types of magnetism do not only coexist but
complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material
the itinerant charge carriers interact with large localised magnetic moments of
Tb(4f) states, forming complex magnetic lattices at low temperatures, which we
associate with self-organisation of magnetic clusters. The formation of
magnetic clusters results in low-energy optical spectral weight shifts, which
correspond to opening of the pseudogap in the conduction band of the itinerant
charge carriers and development of the low- and high-spin intersite electronic
transitions. This phenomenon, driven by self-trapping of electrons by magnetic
fluctuations, could be common in correlated metals, including besides
Kondo-lattice metals, Fe-based and cuprate superconductors.Comment: 30 pages, 6 Figure
Derivation of a dynamic model of the kinetics of nitrogen uptake throughout the growth of lettuce : calibration and validation
A kinetic model of nitrogen (N) uptake throughout growth was developed for lettuce
cultivated in nutrient solution under varying natural light conditions. The model couples
nitrogen uptake with dry matter accumulation using a two-compartment mechanistic
approach, incorporating structural and non-structural pools. Maximum nitrogen uptake
rates are assumed to decline with shoot dry weight, to allow for the effects of plant
age. The model was parameterized using data from the literature, and calibrated for
differences in light intensity using an optimization algorithm utilizing data from three
experiments in different growing seasons. The calibrated model was validated against
the data from two independent experiments conducted under different light conditions.
Results showed that the model made good predictions of nitrogen uptake by plants from
seedlings to maturity under fluctuating light levels in a glasshouse. Plants grown at a
higher light intensity showed larger maximum nitrogen uptake rates, but the effect of
light intensity declined towards plant maturity
- …