1,140 research outputs found

    Physico-chemical changes during fruit growth and developmental stages in yellow type passion fruit (Passiflora edulis f. flavicarpa Degener) accessions

    Get PDF
    Physiological and biochemical changes during fruit growth, development and maturity of six yellow type passion fruit (Passiflora edulis f. flavicarpa Degener) accessions were studied at weekly interval after fruit set from 21 days to 91 days after fruit set and after dropping from vine also. Fruit growth of passion fruit followed a single sigmoid growth curve. Fruit length (cm), diameter (cm) and weight (g) increased continuously (25.24%, 33.13% and 75.08% respectively) (from the initial stage till maturity up to 84 days), which slightly declined at ripening stage. Fruits developed acceptable physico-chemical qualities with good colour, when harvested at 84 to 91 days after fruit set (DAF). The study further revealed that the days taken from fruit set to maturity and ripening, colour change, total soluble solids and acidity may be considered as the most reliable maturity indices for taking harvest decision in pas-sion fruit

    Effect Of Nanoclay On The Toughness Of Epoxy And Mechanical, Impact Properties Of E-glass-epoxy Composites

    Get PDF
    Organically modified montimorillonite nanoclay was added to the epoxy and E-glass-epoxy composites. The influence of nanoclay content (varied between 0 to 5wt %) on the relative crosslink density and the fracture toughness of the epoxy matrix was studied. Differential scanning calorimetry (DSC) indicated that the amino functional groups present on the nanoclay react with the epoxy matrix to increase the crosslink density of about 13 and 18% at 3 and 5wt% addition, respectively. The toughness of the epoxy composites increased by 25% at 3wt% addition of nanoclay, whereas, it decreases at 5wt%. Flexural strength and tensile strength of the E-glass-epoxy composites were found to increase by 12% and 11% respectively at 3wt% addition of nanoclay, while at 5wt% addition these properties decreased due to the matrix embrittlement. Interestingly matrix embrittlement is found to be beneficial in increasing the impact resistance due to spallation of embrittled matrix that ensures the dissipation of the impact energy. 5wt% nanoclay addition increases the impact strength by 29% and reduces the back face bulge of composite by 31%. These results may lead to the design and realization of glass-epoxy composites with better impact strength

    Anti-tumor effect of fruit rind of Myristica malabarica in an Ehrlich ascites carcinoma model

    Get PDF
    Background: Among the various modalities of anti-cancer treatment, cancer chemotherapy plays a very vital role. The alarming side effects being its main drawback leads to relentless research for newer agents. A new natural agent with promising anti-cancer properties from in-vitro studies leads to this study. Here we have evaluated the anti-tumor activity of a crude extract of fruit rind of Myristica malabarica in an Ehrlich ascites carcinoma model in mice.Methods: A murine model of cancer was established with i.p. inoculation of Ehrlich Ascites carcinoma (EAC) cells; animals were divided into five groups (including normal control) to observe the inhibitory effect of a crude extract of the fruit rind of Myristica malabarica/rampatri (0-100mg/kg b.w. i.p.) as compared with methotrexate (0.4mg/kg bw., i.p.). Blood and ascitic fluid were collected on the 10th day for analysis.Results: In the EAC model, there was an increase in tumor volume, tumor weight, and tumor packed cell volume, which was decreased by rampatri (50 and 100mg/kg bw) along with an increase in the mean survival time (MST). Rampatri caused minimal alterations in hematological parameters, renal functions remained unchanged but an increase in hepatic SGOT was demonstrated.Conclusions: The crude extract of rampatri (containing Malabaricones) exhibited significant anti-tumor activity with minimal effect on hematological and renal functions

    Effectiveness of malabaricone-A in P-glycoprotein over-expressing cancer cell lines

    Get PDF
    Background: A major impediment in treatment for cancers is resistance to chemotherapy and is primarily attributed to over-expression of efflux pumps. This study aimed to establish the cytotoxicity of malabaricone-A (MAL-A) in P-glycoprotein/multidrug resistance (P-gp/MDR) over-expressing hematopoietic cancer cell lines.Methods: Leukemia and multiple myeloma cell lines were indirectly evaluated for their P-gp/MDR status by examining Calcein-AM fluorescence and cell viability was assessed by the MTS-PMS assay.Results: The fluorescence of calcein was significantly decreased in three cell lines LP-1, RPMI-8226 and CEM-ADR 5000 and reversal with verapamil endorsed their P-gp/MDR activity. The mean IC50 of MAL-A in these MDR+ cell lines (5.40±1.41 to 12.33±0.78 µg/ml) was comparable with the MDR- leukemic (9.72±1.08 to 19.26±0.75 µg/ml) and multiple myeloma cell lines (9.65±0.39 to 18.05±0.17 μg/ml).Conclusions: Irrespective of their P-gp activity, the cytotoxicity of MAL-A was comparable, making it worthy of future pharmacological consideration in multidrug resistance

    Malabaricone-A Induces A Redox Imbalance That Mediates Apoptosis in U937 Cell Line

    Get PDF
    BACKGROUND: The 'two-faced' character of reactive oxygen species (ROS) plays an important role in cancer biology by acting both as secondary messengers in intracellular signaling cascades and sustaining the oncogenic phenotype of cancer cells, while on the other hand, it triggers an oxidative assault that causes a redox imbalance translating into an apoptotic cell death. PRINCIPAL FINDINGS: Using a tetrazolium [{3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl}-2H-tetrazolium] based cell viability assay, we evaluated the cytotoxicity of a plant derived diarylnonanoid, malabaricone-A on leukemic cell lines U937 and MOLT-3. This cytotoxicity hinged on its ability to cause a redox imbalance via its ability to increase ROS, measured by flow cytometry using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and by decreasing glutathione peroxidase activity. This redox imbalance mediated apoptosis was evident by an increase in cytosolic [Ca(2+)], externalization of phosphatidyl serine as also depolarization of the mitochondrial membrane potential as measured by flow cytometry. There was concomitant peroxidation of cardiolipin, release of free cytochrome c to cytosol along with activation of caspases 9, 8 and 3. This led to cleavage of the DNA repair enzyme, poly (ADP-ribose) polymerase that caused DNA damage as proved by labeling with 4',6-diamidino-2-phenylindole (DAPI); furthermore, terminal deoxy ribonucleotide transferase catalysed incorporation of deoxy uridine triphosphate confirmed DNA nicking and was accompanied by arrest of cell cycle progression. CONCLUSIONS: Taken together, compounds like MAL-A having pro-oxidant activity mediate their cytotoxicity in leukemic cells via induction of oxidative stress triggering a caspase dependent apoptosis

    Studies on High Density Planting and Nutrient Requirement of Banana in Different States of India

    Get PDF
    An experiment was conducted under the ICAR-All India Coordinated Research Project on Fruits to study the high-density planting (HDP) and nutrient requirement of banana at six research centres across the country, including Bhubaneswar (Orissa), Gandevi (Gujarat), Jalgaon (Maharashtra), Jorhat (Assam), Kannara (Kerala) and Mohanpur (West Bengal) to enable higher productivity of banana and profit to farmers. The objective of this study was to explore the possibility of increasing productivity through the intervention of only per unit plant population (through planting system) and level of nutrition, but without any interference to the regional choices of variety (eg., choice variety Nendran for Kerala or Martaman for West Bengal), production system (mono/poly- clone, single/multi-year plantation, and POP of respective states), for which national productivity ranges are much skewed also. Results indicated that intervention of only plant density could increase the productivity of banana within the existing system of production and choice of a variety of different regions or states. The experiment was laid out in RBD with four planting densities (S1P2, S1P3, S2P2 and S2P3, where S1=2m x 3m, S2=1.8m x 3.6m, P2=2 suckers/hill, P3=3 suckers/hill), three nutrition levels (F1, F2 and F3 , which is 100%, 75% and 50% of RDF) and one with region-specific conventional planting density and nutrition (100% of RDF) practices as control. The results of this experiment showed that HDP (S1P3, 5000 plants /ha) in banana, accommodating three suckers per hill at 2m x 3m spacing increased productivity over the conventional system at the Bhubaneswar, Gandevi, Jorhat, Kannara and Mohanpur centres. The increase in productivity due to HDP (5,000/ha) over control was 28.9% (RDF 25%) to 50.6% (RDF 100%) at Bhubaneswar, 15.2% (RDF 25%) to 21.9% (RDF 100%) at Gandevi, 4.0% (RDF 25%) to 7.4% (RDF 100%) at Jorhat, 33.5% (RDF 25%) to 43.5% (RDF 100%) at Kannara and 46.5% (RDF 25%) to 79.0% (RDF 100%) at Mohanpur centre. The nutrient requirement under HDP was 100% RDF at Kannara, 75% RDF at Bhubaneswar and Mohanpur and 50% RDF at Gandevi and Jorhat centres, which indicates a saving in cost of fertilizer input by 25% -50%. It is, therefore, recommended for HDP (5000 plants/ha) in banana, accommodating three suckers per hill at 2m x 3m (6.6 ft x 3.8 ft) spacing with 50% RDF in the agro-climatic regions of Gandevi and Jorhat, with 75% RDF in the agro-climatic regions of Bhubaneswar and Mohanpur and with 100% RDF in the agro-climatic region of Kannara in order to ensure higher productivity and profit to farmers
    corecore