1,960 research outputs found

    Demixing of aqueous polymer two-phase systems in low gravity

    Get PDF
    When polymers such as dextran and poly(ethylene glycol) are mixed in aqueous solution biphasic systems often form. On Earth the emulsion formed by mixing the phases rapidly demixes because of phase density differences. Biological materials can be purified by selective partitioning between the phases. In the case of cells and other particulates the efficiency of these separations appears to be somewhat compromised by the demixing process. To modify this process and to evaluate the potential of two-phase partitioning in space, experiments on the effects of gravity on phase emulsion demixing were undertaken. The behavior of phase systems with essentially identical phase densities was studied at one-g and during low-g parabolic aircraft maneuvers. The results indicate the demixing can occur rather rapidly in space, although more slowly than on Earth. The demixing process was examined from a theoretical standpoint by applying the theory of Ostwald ripening. This theory predicts demizing rates many orders of magnitude lower than observed. Other possible demixing mechanisms are considered

    Rigorous sufficient conditions for index-guided mode in microstructured dielectric waveguides

    Full text link
    We derive a sufficient condition for the existence of index-guided modes in a very general class of dielectric waveguides, including photonic-crystal fibers (arbitrary periodic claddings, such as ``holey fibers''), anisotropic materials, and waveguides with periodicity along the propagation direction. This condition provides a rigorous guarantee of cutoff-free index-guided modes in any such structure where the core is formed by increasing the index of refraction (e.g. removing a hole). It also provides a weaker guarantee of guidance in cases where the refractive index is increased ``on average'' (precisely defined). The proof is based on a simple variational method, inspired by analogous proofs of localization for two-dimensional attractive potentials in quantum mechanics.Comment: 15 page

    Isoprene emission and photosynthesis during heat waves and drought in black locust

    Get PDF
    Extreme weather conditions, like heat waves and drought, can substantially affect tree physiology and the emissions of biogenic volatile organic compounds (BVOC), including isoprene. To date, however, there is only limited understanding of BVOC emission patterns during prolonged heat and coupled heat–drought stress as well as post-stress recovery. To assess the impacts of heat and heat–drought stress on BVOC emissions, we studied gas exchange and isoprene emissions of black locust trees under controlled environmental conditions. Leaf gas exchange of isoprene, CO2 and H2O was quantified using branch chambers connected to a protontransfer-reaction mass spectrometer and an infrared gas analyzer. Heat and heat–drought stress resulted in a sharp decline of photosynthesis and stomatal conductance. Simultaneously, isoprene emissions increased six- to eight-fold in the heat and heat–drought treatment and resulted in a carbon loss that was equivalent to 12 % and 20 % of assimilated carbon at the time of measurement. Once temperature stress was released at the end of two 15 days long heat waves, stomatal conductance remained reduced, while isoprene emissions and photosynthesis recovered quickly to values of the control trees. Further, we found isoprene emissions to co-vary with net photosynthesis during non-stressful conditions, while during the heat waves, isoprene emissions could be solely described by non-linear functions of light and temperature. However, when isoprene emissions betweentreatments were compared under the same temperature and light conditions (e.g., T = 30° C, PAR = 500 µmol m−2 s−1), heat and heat–drought stressed trees would emit less isoprene than control trees. Ourfindings suggest that different parameterizations of light and temperature functions are needed in order to predict tree isoprene emissions under heat and combined heat–drought stress

    Readout of GEM Detectors Using the Medipix2 CMOS Pixel Chip

    Get PDF
    We have operated a Medipix2 CMOS readout chip, with amplifying, shaping and charge discriminating front-end electronics integrated on the pixel-level, as a highly segmented direct charge collecting anode in a three-stage gas electron multiplier (Triple-GEM) to detect the ionization from 55^{55}Fe X-rays and electrons from 106^{106}Ru. The device allows to perform moderate energy spectroscopy measurements (20 % FWHM at 5.9 keV XX-rays) using only digital readout and two discriminator thresholds. Being a truly 2D-detector, it allows to observe individual clusters of minimum ionizing charged particles in Ar/CO2Ar/CO_2 (70:30) and He/CO2He/CO_2 (70:30) mixtures and to achieve excellent spatial resolution for position reconstruction of primary clusters down to ∼50μm\sim 50 \mu m, based on the binary centroid determination method.Comment: 18 pages, 14 pictures. submitted to Nuclear Instruments and Methods in Physics Research

    Expression of Rb2/p130 in breast and endometrial cancer: correlations with hormone receptor status

    Get PDF
    Rb2/p130 is a member of the retinoblastoma family of proteins, consisting of Rb, Rb2 and p107, which are important negative regulators of cell cycle progression and differentiation. While Rb2 downregulation was observed in several malignant tumours including endometrial cancer, the role of p130 in breast carcinomas is still unknown. We investigated Rb2 protein expression in tumour tissue from 68 mammary and 41 endometrial carcinomas, 4 mammary cell lines, and normal tissue samples. Therefore, we performed Western blot experiments for Rb2, Rb, and the oestrogen and progesterone receptors (ER, PR-A, PR-B). Weak or absent Rb2 expression was more often found in endometrial (59%) than in mammary carcinomas (24%). We found significant positive correlations of Rb2 expression with Rb, ER, and PR-B in breast cancer samples, and of Rb2 with Rb, PR-A, PR-B, and younger age in endometrial carcinomas. No significant associations with histological grading, stage, nodal involvement, or Ki67 staining were detected. Rb2 mRNA expression was studied by semi-quantitative RT-PCR in 56 endometrial or mammary tissue samples and correlated significantly with Western blot results. Our results indicate that loss of Rb2 expression, mostly by transcriptional down-regulation, may be associated with the development and dedifferentiation of most endometrial and a subset of mammary carcinomas. © 2001 Cancer Research Campaign http://bjcancer.co

    J/ψJ/\psi suppression in Pb+Pb collisions and pTp_T broadening

    Full text link
    We have analysed the NA50 data, on the centrality dependence of pTp_T broadening of J/ψJ/\psi's, in Pb+Pb collisions, at the CERN-SPS. The data were analysed in a QCD based model, where J/ψJ/\psi's are suppressed in 'nuclear' medium. Without any free parameter, the model could explain the NA50 pTp_T broadening data. The data were also analysed in a QGP based threshold model, where J/ψJ/\psi suppression is 100% above a critical density. The QGP based model could not explain the NA50 pTp_T broadening data. We have also predicted the centrality dependence of J/ψJ/\psi suppression and pTp_T broadening at RHIC energy. Both the models, the QGP based threshold model and the QCD based nuclear absorption model, predict pTp_T broadening very close to each other.Comment: The paper was completely revised. The conclusion is also changed. 5 pages, 4 figure

    Hydrodynamical assessment of 200 AGeV collisions

    Full text link
    We are analyzing the hydrodynamics of 200 A GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizeable transverse flow deve- lops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the over- population of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.Comment: 19 pages, 11 figs in separate uuencoded file, for LateX, epsf.tex, dvips, TPR-94-5 and BNL-(no number yet
    • …
    corecore