6 research outputs found

    Urocortin induces endothelium-dependent vasodilatation and hyperpolarization of rat mesenteric arteries by activating Ca2+-activated K+ channels

    No full text
    PubMedID: 17785957Urocortin, a member of corticotropin releasing factor (CRF) peptide family, has positive chronotrophic and inotropic effects on heart and also shows a vasodilatory effect. However, the mechanism underlying its vasodilatory effect has yet to be elucidated. Endothelium-dependent relaxation of resistance arteries is mainly achieved by activation of K+ channels. Therefore, we investigated possible role of K+ channels and hyperpolarization for the vasodilatory effect of urocortin using the isolated perfused rat mesenteric arteries. Urocortin (0.2 nM) produced a slow-onset decrease in the perfusion pressure of the mesenteric vascular bed, which was elevated by an ? 1-adrenoceptor agonist, phenylephrine (2-4 µM). Urocortin also hyperpolarized the main inesenteric artery. Removal of endothelium with saponin treatment considerably inhibited the relaxation and hyperpolarization induced by urocortin. In contrast, the hyperpolarization was not significantly changed by cyclooxygenase inhibitor, indomethacin (1 µM) and/or nitric oxide synthase inhibitor, Nw-nitro-L-arginine (100 µM). Urocortin-induced relaxation was not affected by the combination of a guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 µM), indomethacin and Nw-nitro-L-arginine. However, the relaxation and hyperpolarization were abolished by high extracelluler potassium concentration (40 mM) or by a large conductance Ca2+-activated K+ channel blocker, charybdotoxin (1 nM). Glibenclamide (1 µM), an ATP-dependent K+ channel inhibitor, did not affect the relaxation and hyperpolarization. These results suggest that urocortin causes endothelium-dependent relaxation and hyperpolarization of rat mesenteric arteries, probably through the activation of charybdotoxin sensitive Ca2+-activated K+ channels. These findings also indicate an essential role of the endothelium for the urocortin-elicited vascular relaxation and hyperpolarization. © 2007 Tohoku University Medical Press

    Effects of some divalent cations on nitrergic relaxations in the mouse corpus cavernosum

    No full text
    PubMedID: 11903503Acute effects of some divalent cations (Cd2+, Ni2+, Co2+, Zn2+, Mn2+ and Sn2+) were investigated on neurogenic and endothelium-dependent relaxations in the isolated mouse corpus cavernosum. Neither neurogenic nor endothelium-dependent relaxation was affected by cations at the concentrations used (up to 100 µM), except Cd2+. Although Cd2+ (20 and 40 µM) did not cause any significant alteration in the acetylcholine- (ACh) or sodium nitroprusside- (SNP) induced relaxation, it inhibited electrical field stimulation-(EFS) produced relaxation significantly. Zn2+ and selenium could not reverse this inhibitory action. Cd2+ did block the EFS-evoked guanethidine-sensitive contraction in the presence of NG-nitro-L-arginine. Elevation of external Ca2+ content significantly reduced the inhibitions due to Cd2+ on the EFS-induced relaxation and on the EFS-evoked guanethidine-sensitive contraction. In the Ca2+-omitted medium, EFS-induced relaxation disappeared, while acetylcholine-elicited relaxation resisted. Verapamil was ineffective on the relaxation produced by EFS or acetylcholine. However, it significantly diminished phenylephrine-induced contractions. These findings suggest that unlike other cations at the concentrations used in the present study, Cd2+ may have an effect on an external Ca2+-dependent mechanism at the neuronal level, and this effect may be responsible for its acute inhibitory action on the neurogenic relaxation in the mouse corpus cavernosum

    Targeting protein kinases in central nervous system disorders

    No full text
    corecore