286 research outputs found

    7,9-Bis(hy­droxy­meth­yl)-7H-purine-2,6,8(1H,3H,9H)trione

    Get PDF
    The structure of the title uric acid derivative, C7H8N4O5, from human kidney stones, is characterized by the C and O atoms of one of the two hy­droxy­methyl groups being disordered nearly equally over three different sites. In the crystal, mol­ecules are connected by a three-dimensional hydrogen-bonding scheme though they look stacked in planes nearly parallel to (04)

    Osteoblastic differentiation and P-glycoprotein multidrug resistance in a murine osteosarcoma model

    Get PDF
    A recent study of multidrug resistance (MDR) 1 gene transfected osteosarcoma cells found a cause-effect relationship between increased expression of P-glycoprotein (P-gp) and a low aggressive phenotype. However, several experimental and clinical studies have observed contradictory findings in that P-gp expression has been associated with tumour progression. In the present study, we characterized P-gp-positive and P-gp-negative single-cell clones of a murine osteosarcoma, to further investigate the relationship between P-gp expression and changes in cell phenotype. Although these clones were all selected by doxorubicin (DOX) exposure, they were heterogeneous with respect to MDR1 gene expression. The P-gp-positive clones revealed MDR phenotype, whereas the P-gp-negative clones showed no resistance to drugs. Morphological and functional analysis showed that both the P-gp-positive and P-gp-negative clones were more differentiated than the parent cells in terms of enhanced activity of cellular alkaline phosphatase, an increase in well-organized actin stress fibres and enhanced osteogenic activity. Moreover, these subclones all displayed a decrease in malignant potential such as oncogenic activity, tumour growth rate and metastatic ability, regardless of their P-gp status. These results indicate that the observed osteoblastic differentiation and less aggressive phenotype in DOX-selected osteosarcoma cells may not only be explained by the direct effect of P-gp, and accordingly, consideration of the effect of DOX, as well as P-gp, appears to be important. © 2000 Cancer Research Campaig

    Modulation Instability of Ultrashort Pulses in Quadratic Nonlinear Media beyond the Slowly Varying Envelope Approximation

    Full text link
    We report a modulational instability (MI) analysis of a mathematical model appropriate for ultrashort pulses in cascaded quadratic-cubic nonlinear media beyond the so-called slowly varying envelope approximation. Theoretically predicted MI properties are found to be in good agreement with numerical simulation. The study shows the possibility of controlling the generation of MI and formation of solitons in a cascaded quadratic-cubic media in the few cycle regimes. We also find that stable propagation of soliton-like few-cycle pulses in the medium is subject to the fulfilment of the modulation instability criteria

    A Kinematic Approach for Efficient and Robust Simulation of the Cardiac Beating Motion

    Get PDF
    Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience. However, most existing methods require enormous computational costs and often show unstable behavior for extreme parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local regions as much as possible. A comparison between our method and a physics-based method showed that our method can generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and interactive applications

    RNA interference targeting survivin exerts antitumoral effects in vitro and in established glioma xenografts in vivo

    Get PDF
    Malignant glioma represents the most common primary adult brain tumor in Western industrialized countries. Despite aggressive treatment modalities, the median survival duration for patients with glioblastoma multiforme (GBM), the highest grade malignant glioma, has not improved significantly over past decades. One promising approach to deal with GBM is the inactivation of proteins essential for survival or progression of glioma cells by means of RNA interference (RNAi) techniques. A likely candidate for an RNAi therapy of gliomas is the inhibitor of apoptosis protein survivin. Survivin is involved in 2 main cellular processes–cell division and inhibition of apoptosis. We show here that stable RNAi of survivin induced polyploidy, apoptosis, and impaired proliferation of human U343-MG, U373-MG, H4, and U87-MG cells and of primary glioblastoma cells. Proteome profiler arrays using U373-MG cells identified a novel set of differentially expressed genes upon RNAi-mediated survivin knockdown. In particular, the death receptor TRAIL R2/DR5 was strongly upregulated in survivin-depleted glioma cells, inducing an enhanced cytotoxic response of allogeneic human NK cells. Moreover, an experimental in vivo therapy using polyethylenimine (PEI)/siRNA complexes for survivin knockdown efficiently blocked tumor growth of established subcutaneous U373-MG tumors and enhanced survival of NMRInu/nu mice orthopically transplanted with U87-MG cells. We conclude that survivin is functionally relevant in gliomas and that PEI-mediated exogenous delivery of siRNA targeting survivin is a promising strategy for glioblastoma therapy

    The Complete Nucleotide Sequence of the Coffee (Coffea Arabica L.) Chloroplast Genome: Organization and Implications for Biotechnology and Phylogenetic Relationships Amongst Angiosperms

    Get PDF
    The chloroplast genome sequence of Coffea arabica L., the first sequenced member of the fourth largest family of angiosperms, Rubiaceae, is reported. The genome is 155 189 bp in length, including a pair of inverted repeats of 25 943 bp. Of the 130 genes present, 112 are distinct and 18 are duplicated in the inverted repeat. The coding region comprises 79 protein genes, 29 transfer RNA genes, four ribosomal RNA genes and 18 genes containing introns (three with three exons). Repeat analysis revealed five direct and three inverted repeats of 30 bp or longer with a sequence identity of 90% or more. Comparisons of the coffee chloroplast genome with sequenced genomes of the closely related family Solanaceae indicated that coffee has a portion of rps19 duplicated in the inverted repeat and an intact copy of infA. Furthermore, whole-genome comparisons identified large indels (\u3e 500 bp) in several intergenic spacer regions and introns in the Solanaceae, including trnE (UUC)–trnT (GGU) spacer, ycf4–cemA spacer, trnI (GAU) intron and rrn5–trnR (ACG) spacer. Phylogenetic analyses based on the DNA sequences of 61 protein-coding genes for 35 taxa, performed using both maximum parsimony and maximum likelihood methods, strongly supported the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids, asterids, eurosids II, and euasterids I and II. Coffea (Rubiaceae, Gentianales) is only the second order sampled from the euasterid I clade. The availability of the complete chloroplast genome of coffee provides regulatory and intergenic spacer sequences for utilization in chloroplast genetic engineering to improve this important crop

    PDEPT: polymer-directed enzyme prodrug therapy

    Get PDF
    Polymer-directed enzyme prodrug therapy (PDEPT) is a novel two-step antitumour approach using a combination of a polymeric prodrug and polymer-enzyme conjugate to generate cytotoxic drug selectively at the tumour site. In this study the polymeric prodrug N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-Gly-Phe-Leu-Gly-doxorubicin conjugate PK1 (currently under Phase II clinical evaluation) was selected as the model prodrug, and HPMA copolymer-cathepsin B as a model for the activating enzyme conjugate. Following polymer conjugation (yield of 30–35%) HPMA copolymer-cathepsin B retained ~20–25% enzymatic activity in vitro. To investigate pharmacokinetics in vivo,125I-labelled HPMA copolymer-cathepsin B was administered intravenously (i.v.) to B16F10 tumour-bearing mice. HPMA copolymer-cathespin B exhibited a longer plasma half-life (free cathepsin B t1/2α= 2.8 h; bound cathepsin B t1/2α= 3.2 h) and a 4.2-fold increase in tumour accumulation compared to the free enzyme. When PK1 (10 mg kg−1dox-equiv.) was injected i.v. into C57 mice bearing subcutaneously (s.c.) palpable B16F10 tumours followed after 5 h by HPMA copolymer-cathepsin B there was a rapid increase in the rate of dox release within the tumour (3.6-fold increase in the AUC compared to that seen for PK1 alone). When PK1 and the PDEPT combination were used to treat established B16F10 melanoma tumour (single dose; 10 mg kg−1dox-equiv.), the antitumour activity (T/C%) seen for the combination PDEPT was 168% compared to 152% seen for PK1 alone, and 144% for free dox. Also, the PDEPT combination showed activity against a COR-L23 xenograft whereas PK1 did not. PDEPT has certain advantages compared to ADEPT and GDEPT. The relatively short plasma residence time of the polymeric prodrug allows subsequent administration of polymer-enzyme without fear of prodrug activation in the circulation and polymer-enzyme conjugates have reduced immunogenicity. This study proves the concept of PDEPT and further optimisation is warranted. © 2001 Cancer Research Campaign   http://www.bjcancer.co

    Identification of G1-Regulated Genes in Normally Cycling Human Cells

    Get PDF
    BACKGROUND: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease

    Cyclic AMP Responsive Element Binding Proteins Are Involved in ‘Emergency’ Granulopoiesis through the Upregulation of CCAAT/Enhancer Binding Protein β

    Get PDF
    In contrast to the definitive role of the transcription factor, CCAAT/Enhancer binding protein α (C/EBPα), in steady-state granulopoiesis, previous findings have suggested that granulopoiesis during emergency situations, such as infection, is dependent on C/EBPβ. In this study, a novel lentivirus-based reporter system was developed to elucidate the molecular switch required for C/EBPβ-dependency. The results demonstrated that two cyclic AMP responsive elements (CREs) in the proximal promoter region of C/EBPβ were involved in the positive regulation of C/EBPβ transcription during granulocyte-macrophage colony-stimulating factor (GM-CSF)–induced differentiation of bone marrow cells. In addition, the transcripts of CRE binding (CREB) family proteins were readily detected in hematopoietic stem/progenitor cells. CREB was upregulated, phosphorylated and bound to the CREs in response to GM-CSF stimulation. Retroviral transduction of a dominant negative CREB mutant reduced C/EBPβ mRNA levels and significantly impaired the proliferation/differentiation of granulocyte precursors, while a constitutively active form of CREB facilitated C/EBPβ transcription. These data suggest that CREB proteins are involved in the regulation of granulopoiesis via C/EBPβ upregulation
    corecore