94 research outputs found

    Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure

    No full text
    Nanoscale devices, such as all-optical modulators and electro-optical transducers, can be implemented in heterostructures that integrate plasmonic nanostructures with functional active materials. Here we demonstrate all-optical control of a nanoscale memory effect in such a heterostructure by coupling the localized surface plasmon resonance (LSPR) of gold nanodisk arrays to a phase-changing material (PCM), vanadium dioxide (VO<inf>2</inf>). By latching the VO<inf>2</inf> in a distinct correlated metallic state during the insulator-to-metal transition (IMT), while concurrently exciting the hybrid nanostructure with one or more ultraviolet optical pulses, the entire phase space of this correlated state can be accessed optically to modulate the plasmon response. We find that the LSPR modulation depends strongly but linearly on the initial latched state, suggesting that the memory effect encoded in the plasmon resonance wavelength is linked to the strongly correlated electron states of the VO<inf>2</inf>. The continuous, linear variation of the electronic and optical properties of these model heterostructures opens the way to multiple design strategies for hybrid devices with novel optoelectronic functionalities, which can be controlled by an applied electric or optical field, strain, injected charge, or temperature.Department of Applied Physic

    Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide

    Get PDF
    Nanoscale devices in which the interaction with light can be configured using external control signals hold great interest for next-generation optoelectronic circuits. Materials exhibiting a structural or electronic phase transition offer a large modulation contrast with multi-level optical switching and memory functionalities. In addition, plasmonic nanoantennas can provide an efficient enhancement mechanism for both the optically induced excitation and the readout of materials strategically positioned in their local environment. Here, we demonstrate picosecond all-optical switching of the local phase transition in plasmonic antenna-vanadium dioxide (VO2) hybrids, exploiting strong resonant field enhancement and selective optical pumping in plasmonic hotspots. Polarization- and wavelength-dependent pump-probe spectroscopy of multifrequency crossed antenna arrays shows that nanoscale optical switching in plasmonic hotspots does not affect neighboring antennas placed within 100 nm of the excited antennas. The antenna-assisted pumping mechanism is confirmed by numerical model calculations of the resonant, antenna-mediated local heating on a picosecond time scale. The hybrid, nanoscale excitation mechanism results in 20 times reduced switching energies and 5 times faster recovery times than a VO2 film without antennas, enabling fully reversible switching at over two million cycles per second and at local switching energies in the picojoule range. The hybrid solution of antennas and VO2 provides a conceptual framework to merge the field localization and phase-transition response, enabling precise, nanoscale optical memory functionalities

    4D Imaging and Diffraction Dynamics of Single-Particle Phase Transition in Heterogeneous Ensembles

    Get PDF
    In this Letter, we introduce conical-scanning dark-field imaging in four-dimensional (4D) ultrafast electron microscopy to visualize single-particle dynamics of a polycrystalline ensemble undergoing phase transitions. Specifically, the ultrafast metal–insulator phase transition of vanadium dioxide is induced using laser excitation and followed by taking electron-pulsed, time-resolved images and diffraction patterns. The single-particle selectivity is achieved by identifying the origin of all constituent Bragg spots on Debye–Scherrer rings from the ensemble. Orientation mapping and dynamic scattering simulation of the electron diffraction patterns in the monoclinic and tetragonal phase during the transition confirm the observed behavior of Bragg spots change with time. We found that the threshold temperature for phase recovery increases with increasing particle sizes and we quantified the observation through a theoretical model developed for single-particle phase transitions. The reported methodology of conical scanning, orientation mapping in 4D imaging promises to be powerful for heterogeneous ensemble, as it enables imaging and diffraction at a given time with a full archive of structural information for each particle, for example, size, morphology, and orientation while minimizing radiation damage to the specimen

    Amidine Functionality As a Conformational Probe of Cyclic Peptides

    Full text link

    Electron-beam deposition of vanadium dioxide thin films

    Full text link
    corecore