601 research outputs found

    High frequency and high wavenumber solar oscillations

    Full text link
    We determine the frequencies of solar oscillations covering a wide range of degree (100< l <4000) and frequency (1.5 <\nu<10 mHz) using the ring diagram technique applied to power spectra obtained from MDI (Michelson Doppler Imager) data. The f-mode ridge extends up to degree of approximately 3000, where the line width becomes very large, implying a damping time which is comparable to the time period. The frequencies of high degree f-modes are significantly different from those given by the simple dispersion relation \omega^2=gk. The f-mode peaks in power spectra are distinctly asymmetric and use of asymmetric profile increases the fitted frequency bringing them closer to the frequencies computed for a solar model.Comment: Revised version. 1.2 mHz features identified as artifacts of data analysis. Accepted for publication in Ap

    Zonal Velocity Bands and the Solar Activity Cycle

    Get PDF
    We compare the zonal flow pattern in subsurface layers of the Sun with the distribution of surface magnetic features like sunspots and polar faculae. We demonstrate that in the activity belt, the butterfly pattern of sunspots coincides with the fast stream of zonal flows, although part of the sunspot distribution does spill over to the slow stream. At high latitudes, the polar faculae and zonal flow bands have similar distributions in the spatial and temporal domains.Comment: To appear in Solar Physic

    Comparison of High-degree Solar Acoustic Frequencies and Asymmetry between Velocity and Intensity Data

    Get PDF
    Using the local helioseismic technique of ring diagram we analyze the frequencies of high--degree f- and p-modes derived from both velocity and continuum intensity data observed by MDI. Fitting the spectra with asymmetric peak profiles, we find that the asymmetry associated with velocity line profiles is negative for all frequency ranges agreeing with previous observations while the asymmetry of the intensity profiles shows a complex and frequency dependent behavior. We also observe systematic frequency differences between intensity and velocity spectra at the high end of the frequency range, mostly above 4 mHz. We infer that this difference arises from the fitting of the intensity rather than the velocity spectra. We also show that the frequency differences between intensity and velocity do not vary significantly from the disk center to the limb when the spectra are fitted with the asymmetric profile and conclude that only a part of the background is correlated with the intensity oscillations.Comment: Accepted for publication in Astrophysical Journa

    Momentum dependence of drag coefficients and heavy flavour suppression in quark gluon plasma

    Full text link
    The momentum dependence of the drag coefficient of heavy quarks propagating through quark gluon plasma (QGP) has been evaluated. The results have been used to estimate the nuclear suppression factor of charm and bottom quarks in QGP. We observe that the momentum dependence of the transport coefficients plays crucial role in the suppression of the heavy quarks and consequently in discerning the properties of QGP using heavy flavours as a probe. We show that the large suppression of the heavy quarks observed at RHIC and LHC is predominantly due to the radiative losses. The suppression of D0D^0 in Pb+Pb collisions at LHC energy - recently measured by the ALICE collaboration has also been studied.Comment: Minor changes in the tex

    How are Forbush decreases related to interplanetary magnetic field enhancements ?

    Full text link
    Aims. Forbush decrease (FD) is a transient decrease followed by a gradual recovery in the observed galactic cosmic ray intensity. We seek to understand the relationship between the FDs and near-Earth interplanetary magnetic field (IMF) enhancements associated with solar coronal mass ejections (CMEs). Methods. We use muon data at cutoff rigidities ranging from 14 to 24 GV from the GRAPES-3 tracking muon telescope to identify FD events. We select those FD events that have a reasonably clean profile, and magnitude > 0.25%. We use IMF data from ACE/WIND spacecrafts. We look for correlations between the FD profile and that of the one hour averaged IMF. We ask if the diffusion of high energy protons into the large scale magnetic field is the cause of the lag observed between the FD and the IMF. Results. The enhancement of the IMF associated with FDs occurs mainly in the shock-sheath region, and the turbulence level in the magnetic field is also enhanced in this region. The observed FD profiles look remarkably similar to the IMF enhancement profiles. The FDs typically lag the IMF enhancement by a few hours. The lag corresponds to the time taken by high energy protons to diffuse into the magnetic field enhancement via cross-field diffusion. Conclusions. Our findings show that high rigidity FDs associated with CMEs are caused primarily by the cumulative diffusion of protons across the magnetic field enhancement in the turbulent sheath region between the shock and the CME.Comment: accepted in A&

    Analysis of procainamide-derivatised heparan sulphate disaccharides in biological samples using hydrophilic interaction liquid chromatography mass spectrometry

    Get PDF
    Glycosaminoglycans (GAGs) are a family of linear heteropolysaccharides made up of repeating disaccharide units that are found on the surface and extracellular matrix of animal cells. They are known to play a critical role in a wide range of cellular processes including proliferation, differentiation and invasion. To elucidate the mechanism of action of these molecules, it is essential to quantify their disaccharide composition. Analytical methods that have been reported involve either chemical or enzymatic depolymerisation of GAGs followed by separation of non-derivatised (native) or derivatised disaccharide subunits and detection by either UV/fluorescence or MS. However, the measurement of these disaccharides is challenging due to their hydrophilic and labile nature. Here we report a pre-column LC-MS method for the quantification of GAG disaccharide subunits. Heparan sulphate (HS) was extracted from cell lines using a combination of molecular weight cutoff and anion exchange spin filters and digested using a mixture of heparinases I, II and III. The resulting subunits were derivatised with procainamide, separated using hydrophilic interaction liquid chromatography and detected using electrospray ionisation operated in positive ion mode. Eight HS disaccharides were separated and detected together with an internal standard. The limit of detection was found to be in the range 0.6–4.9 ng/mL. Analysis of HS extracted from all cell lines tested in this study revealed a significant variation in their composition with the most abundant disaccharide being the non-sulphated ∆UA–GlcNAc. Some structural functional relationships are discussed demonstrating the viability of the pre-column method for studying GAG biolog
    • …
    corecore