27 research outputs found
Genetic and epigenetic changes in the common 1p36 deletion in neuroblastoma tumours
Chromosome 1p is frequently deleted in neuroblastoma (NB) tumours. The commonly deleted region has been narrowed down by loss of heterozygosity studies undertaken by different groups. Based on earlier mapping data, we have focused on a region on 1p36 (chr1: 7 765 595–11 019 814) and performed an analysis of 30 genes by exploring features such as epigenetic regulation, that is DNA methylation and histone deacetylation, mutations at the DNA level and mRNA expression. Treatment of NB cell lines with the histone deacetylase inhibitor trichostatin A led to increased gene transcription of four of the 30 genes, ERRFI1 (MIG-6), PIK3CD, RBP7 (CRBPIV) and CASZ1, indicating that these genes could be affected by epigenetic downregulation in NBs. Two patients with nonsynonymous mutations in the PIK3CD gene were detected. One patient harboured three variations in the same exon, and p.R188W. The other patient had the variation p.M655I. In addition, synonymous variations and one variation in an intronic sequence were also found. The mRNA expression of this gene is downregulated in unfavourable, compared to favourable, NBs. One nonsynonymous mutation was also identified in the ERRFI1 gene, p.N343S, and one synonymous. None of the variations above were found in healthy control individuals. In conclusion, of the 30 genes analysed, the PIK3CD gene stands out as one of the most interesting for further studies of NB development and progression
Differences in the pattern and regulation of mineral deposition in human cell lines of osteogenic and non-osteogenic origin
Bone marrow-derived mesenchymal stem cells (MSCs) are widely used as a cellular model of bone formation, and can mineralize in vitro in response to osteogenic medium (OM). It is unclear, however, whether this property is specific to cells of mesenchymal origin. We analysed the OM response in 3 non-osteogenic lines, HEK293, HeLa and NTera, compared to MSCs. Whereas HEK293 cells failed to respond to OM conditions, the 2 carcinoma-derived lines NTera and HeLa deposited a calcium phosphate mineral comparable to that present in MSC cultures. However, unlike MSCs, HeLa and NTera cultures did so in the absence of dexamethasone. This discrepancy was confirmed, as bone morphogenetic protein inhibition obliterated the OM response in MSCs but not in HeLa or NTera, indicating that these 2 models can deposit mineral through a mechanism independent of established dexamethasone or bone morphogenetic protein signalling
Aberrant Expression of Proteins Involved in Signal Transduction and DNA Repair Pathways in Lung Cancer and Their Association with Clinical Parameters
Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues.We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA) assay. The results showed that 18 molecules were significantly different (p<0.05) by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery.Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers
SPARC: a matricellular regulator of tumorigenesis
Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature