364 research outputs found

    Model based development of torque control drive for induction motors for micro electric vehicles

    Get PDF
    Electric vehicles are attaining significant attention recently and the current legislation is forcing the automotive industry to electrify the productions. Regardless of electric energy accumulation technology, drive technology is one of the vital components of EVs. The motor drive technology has been mainly developed based on the application which required position/velocity control. In automotive application, however, torque control is an important aspect since the drivers have already used to drive the vehicle based on torque control approach in traditional powertrain system. In this article, a model-based approach is employed to develop a controller which can guarantee the precise control of the induction motors torque for a micro electric vehicle (EV) application regardless of operating conditions. The implementation of the control drive was conducted in MATLAB/Simulink environment, followed by Model In the Loop simulation and testing at various test conditions to confirm the robustness of the developed drive. Direct Torque Control (DTC) with optimum voltage vector selection method is employed to control the motor torque that requires fewer power electronics to process its operation and hence lowers the cost of implementation. The result shows the practicality of the designed control system and its ability to track reference torque commands. Vitally, the controlled approach shows fair abilities to control IMs to produce torque at both the motoring and regenerative modes which is a highly important requirement in electrical propulsion powertrains. Furthermore, the controller’s response time was within the industrial standard range which confirms its suitability for industrial implementation at low cost

    Soliton-potential interaction in the nonlinear Klein-Gordon model

    Full text link
    The interaction of solitons with external potentials in nonlinear Klein-Gordon field theory is investigated using an improved model. The presented model has been constructed with a better approximation for adding the potential to the Lagrangian through the metric of background space-time. The results of the model are compared with another model and the differences are discussed.Comment: 14 pages,8 figure

    Diabetes Aggravates Periodontitis by Limiting Repair Through Enhanced Inflammation

    Get PDF
    Periodontitis is the most common lytic bone disease and one of the first clinical manifestations of diabetes. Diabetes increases the risk of periodontitis. The aim of the present study was to examine mechanisms by which diabetes aggravates periodontitis. Ligature-induced periodontitis was examined in Goto-Kakizaki rats with type 2 diabetes. A tumor necrosis factor (TNF)-specificinhibitor, pegsunercept, was applied to diabetic rats after the onset of periodontal disease. Interferon-γ (IFN-γ), TNF-α, interleukin-1 β (IL-1β), fibroblast growth factor-2 (FGF-2), transforming growth factor beta-1 (TGFβ-1), bone morphogenetic protein-2 (BMP-2), and BMP-6 were measured by real-time RT-PCR, and histological sections were examined for leukocyte infiltration and several parameters related to bone resorption and formation. Inflammation was prolonged in diabetic rats and was reversed by the TNF inhibitor, which reduced cytokine mRNA levels, leukocyte infiltration, and osteoclasts. In contrast, new bone and osteoid formation and osteoblast numbers were increased significantly vs. untreated diabetic animals. TNF inhibition in diabetic animals also reduced apoptosis, increased proliferation of bone-lining cells, and increased mRNA levels of FGF-2, TGFβ-1, BMP-2, and BMP-6. Thus, diabetes prolongs inflammation and osteoclastogenesis in periodontitis and through TNF limits the normal reparative process by negatively modulating factors that regulate bone. © FASEB

    Awareness of the Dangers of High Salt Intake among the Urban Omani Population

    Get PDF
    Objectives: This study aimed to assess the knowledge, attitudes and practices of the general public in Oman regarding the dangers of high salt intake. Methods: This cross-sectional questionnaire-based survey was conducted among the urban population in Oman. Individuals aged ≥18 were invited to join the study. Results: A total of 1,214 respondents (mean age 34 ± 10 years) answered the questionnaire. The majority were male (65.8%), employed (69.4%) and some were hypertensive (14.3%). Most (90.9%) were aware that excess salt can cause diseases such as hypertension and that it is either somewhat important (51.2%) or very important (42.9%) to reduce salt in the diet. However, only 42.2% said that they actively try to reduce salt in their diet. Conclusion: Although most people in urban areas of Oman appear to be aware of the dangers of high salt intake, only a few are actively trying to reduce it. More educational activities are required to improve awareness.Keywords: Cross-Sectional Survey; Sodium; Low Salt Diet; Oman

    Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid

    Get PDF
    Covalent Functionalized-Multi wall carbon nanotubes (CF-MWCNTs) and Covalent Functionalized-graphene nanoplatelets (CF-GNPs) with hexagonal boron nitride (h-BN) were suspended in distilled water to prepare the hybrid nanofluids as working fluids inside the Flat Plate Solar Collector (FPSC). Different concentrations of the hybrid nanoparticles were considered and Tween-80 (Tw-80) was used as a surfactant. The stability and thermophysical properties were tested using different measurement tools. The structural and morphological properties were examined using FTIR, XRD, UV–vis spectrometry, HRTEM, FESEM, and EDX. The thermal efficiency of FPSC were tested under different volumetric flow rates (2 L/min, 3 L/min, and 4 L/min), whereas the efficiency of the collector was determined based on ASHRAE standard 93-2010. As a result, the most thermal-efficient solar collector improved up to 85% with hybrid nanofluid as the absorption medium at 4 L/min flow rate. Increment in nanoparticles’ concentrations enhanced thermal energy gain and resulted in higher fluid outlet temperature

    A (Running) Bolt for New Reasons

    Full text link
    We construct a four-parameter family of smooth, horizonless, stationary solutions of ungauged five-dimensional supergravity by using the four-dimensional Euclidean Schwarzschild metric as a base space and "magnetizing" its bolt. We then generalize this to a five-parameter family based upon the Euclidean Kerr-Taub-Bolt. These "running Bolt" solutions are necessarily non-static. They also have the same charges and mass as a non-extremal black hole with a classically-large horizon area. Moreover, in a certain regime their mass can decrease as their charges increase. The existence of these solutions supports the idea that the singularities of non-extremal black holes are resolved by low-mass modes that correct the singularity of the classical black hole solution on large (horizon-sized) scales.Comment: 25 pages, 3 figures, LaTeX; v2: minor changes, references adde

    NF-κB perturbation reveals unique immunomodulatory functions in Prx1 + Fibroblasts that Promote Development of Atopic Dermatitis

    Get PDF
    Skin is composed of diverse cell populations that cooperatively maintain homeostasis. Up-regulation of the nuclear factor кB (NF-кB) pathway may lead to the development of chronic inflammatory disorders of the skin, but its role during the early events remains unclear. Through analysis of single-cell RNA sequencing data via iterative random forest leave one out prediction, an explainable artificial intelligence method, we identified an immunoregulatory role for a unique paired related homeobox-1 (Prx1)+ fibroblast subpopulation. Disruption of Ikkb-NF-кB under homeostatic conditions in these fibroblasts paradoxically induced skin inflammation due to the overexpression of C-C motif chemokine ligand 11 (CCL11; or eotaxin-1) characterized by eosinophil infiltration and a subsequent TH2 immune response. Because the inflammatory phenotype resembled that seen in human atopic dermatitis (AD), we examined human AD skin samples and found that human AD fibroblasts also overexpressed CCL11 and that perturbation of Ikkb-NF-кB in primary human dermal fibroblasts up-regulated CCL11. Monoclonal antibody treatment against CCL11 was effective in reducing the eosinophilia and TH2 inflammation in a mouse model. Together, the murine model and human AD specimens point to dysregulated Prx1+ fibroblasts as a previously unrecognized etiologic factor that may contribute to the pathogenesis of AD and suggest that targeting CCL11 may be a way to treat AD-like skin lesions. © 2022 The Authors, some rights reserve

    A homozygous ATAD1 mutation impairs postsynaptic AMPA receptor trafficking and causes a lethal encephalopathy

    Get PDF
    Members of the AAA+ superfamily of ATPases are involved in the unfolding of proteins and disassembly of protein complexes and aggregates. ATAD1 encoding the ATPase family, AAA+ domain containing 1-protein Thorase plays an important role in the function and integrity of mitochondria and peroxisomes. Postsynaptically, Thorase controls the internalization of excitatory, glutamatergic AMPA receptors by disassembling complexes between the AMPA receptor-binding protein, GRIP1, and the AMPA receptor subunit GluA2. Using whole-exome sequencing, we identified a homozygous frameshift mutation in the last exon of ATAD1 [c.1070_1071delAT; p.(His357Argfs*15)] in three siblings who presented with a severe, lethal encephalopathy associated with stiffness and arthrogryposis. Biochemical and cellular analyses show that the C-terminal end of Thorase mutant gained a novel function that strongly impacts its oligomeric state, reduces stability or expression of a set of Golgi, peroxisomal and mitochondrial proteins and affects disassembly of GluA2 and Thorase oligomer complexes. Atad1−/− neurons expressing Thorase mutantHis357Argfs*15 display reduced amount of GluA2 at the cell surface suggesting that the Thorase mutant may inhibit the recycling back and/or reinsertion of AMPA receptors to the plasma membrane. Taken together, our molecular and functional analyses identify an activating ATAD1 mutation as a new cause of severe encephalopathy and congenital stiffness

    The Nuts and Bolts of Einstein-Maxwell Solutions

    Get PDF
    We find new non-supersymmetric solutions of five-dimensional ungauged supergravity coupled to two vector multiplets. The solutions are regular, horizonless and have the same asymptotic charges as non-extremal charged black holes. An essential ingredient in our construction is a four-dimensional Euclidean base which is a solution to Einstein-Maxwell equations. We construct stationary solutions based on the Euclidean dyonic Reissner-Nordstrom black hole as well as a six-parameter family with a dyonic Kerr-Newman-NUT base. These solutions can be viewed as compactifications of eleven-dimensional supergravity on a six-torus and we discuss their brane interpretation.Comment: 29 pages, 3 figure

    Collective-coordinate analysis of inhomogeneous nonlinear Klein-Gordon field theory

    Full text link
    Two different sets of collective-coordinate equations for solitary solutions of Nonlinear Klein-Gordon (NKG) model is introduced. The collective-coordinate equations are derived using different approaches for adding the inhomogeneities as exrernal potentials to the soliton equation of motion. Interaction of the NKG field with a local inhomogeneity like a delta function potential wall and also delta function potential well is investigated using the presented collective-coordinate equations and the results of two different models are compared. Most of the characters of the interaction are derived analytically. Analytical results are also compared with the results of numerical simulations.Comment: 16 pages, 8 figures. Accepted for publication in Volume 43 of the Brazilian Journal of Physic
    corecore