343 research outputs found

    Flash-Heating of Circumstellar Clouds by Gamma Ray Bursts

    Get PDF
    The blast-wave model for gamma-ray bursts (GRBs) has been called into question by observations of spectra from GRBs that are harder than can be produced through optically thin synchrotron emission. If GRBs originate from the collapse of massive stars, then circumstellar clouds near burst sources will be illuminated by intense gamma radiation, and the electrons in these clouds will be rapidly scattered to energies as large as several hundred keV. Low-energy photons that subsequently pass through the hot plasma will be scattered to higher energies, hardening the intrisic spectrum. This effect resolves the "line-of-death" objection to the synchrotron shock model. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within ~ 1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy would reveal past GRB explosions.Comment: 9 pages, 1 figure, submitted to ApJ Letter

    The electric dipole response of 76^{76}Se above 4 MeV

    Get PDF
    The dipole response of 3476^{76}_{34}Se in the energy range 4 to 9 MeV has been analyzed using a (γ⃗,Îłâ€Č)(\vec\gamma,{\gamma}') polarized photon scattering technique, performed at the High Intensity Îł\gamma-Ray Source facility, to complement previous work performed using unpolarized photons. The results of this work offer both an enhanced sensitivity scan of the dipole response and an unambiguous determination of the parities of the observed J=1 states. The dipole response is found to be dominated by E1E1 excitations, and can reasonably be attributed to a pygmy dipole resonance. Evidence is presented to suggest that a significant amount of directly unobserved excitation strength is present in the region, due to unobserved branching transitions in the decays of resonantly excited states. The dipole response of the region is underestimated when considering only ground state decay branches. We investigate the electric dipole response theoretically, performing calculations in a 3D cartesian-basis time-dependent Skyrme-Hartree-Fock framework.Comment: 20 pages, 18 figures, to be submitted to PR

    Pneumonia in Bighorn Sheep: Testing the Super-Spreader Hypothesis

    Get PDF
    Following introduction of pneumonia, disease can persist in bighorn sheep (Ovis canadensis) populations for decades as annual or sporadic pneumonia epidemics in lambs.  Recurring years of depressed recruitment due to high rates of pneumonia-induced mortality in juveniles is a major obstacle to population recovery.  Management strategies for resolving this problem have so far been elusive. We are investigating the feasibility of removing individual “super-spreaders” to improve lamb survival.  Individual variation in infection and transmission is well documented in human diseases (e.g. “Typhoid Mary”).  We are testing the hypothesis that pneumonia epidemics in lambs are initiated by transmission of pathogens from a few “chronic-shedder” ewes. We have completed the first year of a 5-year project in the Hells Canyon region of Idaho, Oregon, and Washington, and in a captive population at South Dakota State University. Through repeated testing of free-ranging individuals in Hells Canyon, we have identified individual differences in shedding of Mycoplasma ovipneumoniae, a primary pathogen in the bighorn sheep respiratory disease complex.  We also found that when penned separately in captivity, lambs of ewes that consistently tested positive (chronic shedders) were infected and died of pneumonia, whereas lambs born to ewes from an infected population that tested negative (non-shedders), were not infected and survived.  Over the next 4 years we plan to 1) continue and expand testing of free-ranging and captive animals, 2) determine whether removal of chronic-shedder ewes improves lamb survival in free-ranging populations, 3) expand and replicate chronic-shedder commingling experiments in captivity, and 4) establish and monitor a new population founded with non-shedders from an infected population

    Swift multi-wavelength observations of the bright flaring burst GRB051117A

    Get PDF
    We report on the temporal and spectral characteristics of the early X-ray emission from the Gamma Ray Burst 051117A as observed by Swift. The superb quality of the early X-ray light-curve and spectra of this source, one of the brightest seen by the X-ray Telescope at such early times, allows an unprecedented look at the spectral and temporal evolution of the prompt and early afterglow emission for this GRB and allows us to place stringent limits on the detection of lines. The X-ray light-curve at early times is characteristic of a shot-noise process, with individual shots well-modelled by a fast-rise and exponential decay spanning a broad range in rise-times and decay rates. A temporal spectral analysis of the early light-curve shows that the photon index and source intensity are highly correlated with the spectrum being significantly harder when brighter, consistent with the movement of the peak of the Band function to lower energies following individual flares. The high quality spectrum obtained from the first orbit of WT mode data, enables us to place a 3 sigma upper limit on the strength of any emission line features of EW < 15 eV, assuming a narrow emission-line of 100 eV at the peak of the effective area (abridged).Comment: Accepted 15/3/2007 - To appear in A&

    Collectivity of 0\u3csup\u3e+\u3c/sup\u3e States in \u3csup\u3e160\u3c/sup\u3eGd

    Get PDF
    Excited 0+ states in 160Gd have been examined with the (n,nâ€ČÎł) reaction at incident neutron energies up to 2.8 MeV. Gamma-ray excitation functions and angular distribution measurements allow the confirmation of the existence of 0+ states at 1379.70 keV and 1558.30 keV, but we reject the assignments of additional previously suggested 0+ candidates. Limits on the level lifetimes of the observed 0+ states permit an evaluation of the collectivity of these states

    Probing the low-lying level structure of 94Zr through ÎČÂŻ decay

    Get PDF
    223-227Low-lying states of 94Zr are populated following b- decay of 94Y, and the emitted g rays from 94Zr are detected using the 8p spectrometer composed of 20 Compton-suppressed HPGe detectors. High- statistics coincidence data have been used for the placement of very weak decay branches in the level scheme. Combining the results of level lifetimes from a previous experiment and the precisely measured branching ratio values of the weak decay branches from the present experiment, it is possible to extract the B(E2) values for all the possible decay branches from a given level. These values are helpful for proper identification of the collective and non-collective states of 94Zr. The experimental findings have been compared with predictions from shell-model calculations with a limited valence space; however, these calculations are inadequate in reproducing all of the measured spectroscopic quantities

    ÎČ-decay Half-lives of Neutron-rich Nuclides in the A = 100 – 110 Mass Region

    Get PDF
    ÎČ-decay half-lives of neutron-rich nuclides in the A = 100–110 mass region have been measured using an implantation station installed inside of the Summing NaI(Tl) (SuN) detector at the National Superconducting Cyclotron Laboratory. Accurate half-lives for these nuclides are important for nuclear astrophysics, nuclear structure, and nuclear technology. The half-lives from the present work are compared with previous measurements, showing overall good agreement

    Estimation of (\u3cem\u3en, f\u3c/em\u3e) Cross Sections by Measuring Reaction Probability Ratios

    Get PDF
    Neutron-induced reaction cross sections on unstable nuclei are inherently difficult to measure due to target activity and the low intensity of neutron beams. In an alternative approach, named the “surrogate” technique, one measures the decay probability of the same compound nucleus produced using a stable beam on a stable target to estimate the neutron-induced reaction cross section. As an extension of the surrogate method, in this paper we introduce a new technique of measuring the fission probabilities of two different compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. This method was benchmarked in this report by measuring the probability of deuteron-induced fission events in coincidence with protons, and forming the ratio P[236U(d,pf)]/P [238U(d,pf)], which serves as a surrogate for the known cross section ratio of 236U(n, f)/238U(n, f). In addition, the P[238U(d, d f)]/P [236U(d, df)] ratio as a surrogate for the 237U(n, f)/235U(n, f) cross section ratio was measured for the first time in an unprecedented range of excitation energies
    • 

    corecore