1,145 research outputs found
Advanced ceramic coating development for industrial/utility gas turbine applications
The effects of ceramic coatings on the lifetimes of metal turbine components and on the performance of a utility turbine, as well as of the turbine operational cycle on the ceramic coatings were determined. When operating the turbine under conditions of constant cooling flow, the first row blades run 55K cooler, and as a result, have 10 times the creep rupture life, 10 times the low cycle fatigue life and twice the corrosion life with only slight decreases in both specific power and efficiency. When operating the turbine at constant metal temperature and reduced cooling flow, both specific power and efficiency increases, with no change in component lifetime. The most severe thermal transient of the turbine causes the coating bond stresses to approach 60% of the bond strengths. Ceramic coating failures was studied. Analytic models based on fracture mechanics theories, combined with measured properties quantitatively assessed both single and multiple thermal cycle failures which allowed the prediction of coating lifetime. Qualitative models for corrosion failures are also presented
Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model
Author Posting. © 2005 Author(s). This work is licensed under a Creative Commons License. The definitive version was published Biogeosciences 2 (2005): 141-157, doi:10.5194/bg-2-141-2005.Submarine groundwater discharge was quantified by a variety of methods for a 4-day period during the early summer of 2004, in Salt Pond, adjacent to Nauset Marsh, on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. The data suggest that less than one quarter of the discharge in the vicinity of Salt Pond happened within the pond itself, while three quarters or more of the discharge occurred immediately seaward of the pond, either in the channel or in adjacent regions of Nauset Marsh. Much of this discharge, which maintains high radon activities and low salinity, is carried into the pond during each incoming tide. A box model was used as an aid to understand both the rates and the locations of discharge in the vicinity of Salt Pond. The model achieves a reasonable fit to both the salinity and radon data assuming submarine groundwater discharge is fresh and that most of it occurs either in the channel or in adjacent regions of Nauset Marsh. Salinity and radon data, together with seepage meter results, do not rule out discharge of saline groundwater, but suggest either that the saline discharge is at most comparable in volume to the fresh discharge or that it is depleted in radon. The estimated rate of fresh groundwater discharge in the vicinity of Salt Pond is 3000-7000 m3 d-1. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004), although the model predicts this rate of discharge to the pond whereas our data suggest most of the groundwater bypasses the pond prior to discharge. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to better constrain the rate of groundwater discharge seaward of Salt Pond.Financial support was provided by the US Geological Survey
and by National Science Foundation grant #OCE-0346933 to MAC
Gravitational Radiation from Triple Star Systems
We have studied the main features of the gravitational radiation generated by
an astrophysical system constituted of three compact objects attracting one
another (only via gravitational interaction) in such a manner that stable
orbits do exist. We have limited our analysis to systems that can be treated
with perturbative methods. We show the profile of the gravitational waves
emitted by such systems. These results can be useful within the framework of
the new gravitational astronomy which will be made feasible by means of the new
generation of gravitational detectors such as LISA in a no longer far future.Comment: 10 pages plus 9 postscript figures; revtex; accepted for publication
in Int. J. Mod. Phys.
Ultra-Transparent Antarctic Ice as a Supernova Detector
We have simulated the response of a high energy neutrino telescope in deep
Antarctic ice to the stream of low energy neutrinos produced by a supernova.
The passage of a large flux of MeV-energy neutrinos during a period of seconds
will be detected as an excess of single counting rates in all individual
optical modules. We update here a previous estimate of the performance of such
an instrument taking into account the recent discovery of absorption lengths of
several hundred meters for near-UV photons in natural deep ice. The existing
AMANDA detector can, even by the most conservative estimates, act as a galactic
supernova watch.Comment: 9 pages, Revtex file, no figures. Postscript file also available from
http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-888.ps.Z or from
ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-888.ps.
Dirac neutrino magnetic moment and a possible time evolution of the neutrino signal from a supernova
We analyze the influence of neutrino helicity conversion, ,
on the neutrino flux from a supernova caused by the interaction of the Dirac
neutrino magnetic moment with a magnetic field. We show that if the neutrino
has a magnetic moment in the interval and provided that a magnetic field of G exists in the supernova envelope, a peculiar kind of time evolution
of the neutrino signal from the supernova caused by the resonance transition
in the magnetic field of the envelope can appear. If a
magnetar with a poloidal magnetic field is formed in a supernova explosion,
then the neutrino signal could have a pulsating behavior, i.e., a kind of a
neutrino pulsar could be observed, when it rotates around an axis that does not
coincide with its magnetic moment and when the orientation of its rotation axis
is favourable for our observation.Comment: 9 pages, LaTeX, 2 EPS figures, based on the talk presented by A.V.
Kuznetsov at the XVI International Seminar Quarks'2010, Kolomna, Moscow
Region, June 6-12, 2010, to appear in the Proceeding
Roma e la storia del Canada francese sino alla guerra dei Sette Anni
Presentation of the documents concerning New France and Canada in the Vatican Archive
Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects
Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL DR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL DR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments. © 2013 Macmillan Publishers Limited All rights reserved
Screening of Long-Range Leptonic Forces by Cosmic Background Neutrinos
The absence of dispersion effects of the SN~1987A neutrino pulse has been
used to constrain novel long-range forces between neutrinos and galactic
baryonic or non-baryonic matter. If these forces are mediated by vector bosons,
screening effects by the cosmic neutrino background invalidate the SN~1987A
limits and other related arguments.Comment: REVTeX 3.0 document, 6 pages, no figures
Potential for Supernova Neutrino Detection in MiniBooNE
The MiniBooNE detector at Fermilab is designed to search for oscillation appearance at and to make a
decisive test of the LSND signal. The main detector (inside a veto shield) is a
spherical volume containing 0.680 ktons of mineral oil. This inner volume,
viewed by 1280 phototubes, is primarily a \v{C}erenkov medium, as the
scintillation yield is low. The entire detector is under a 3 m earth
overburden. Though the detector is not optimized for low-energy (tens of MeV)
events, and the cosmic-ray muon rate is high (10 kHz), we show that MiniBooNE
can function as a useful supernova neutrino detector. Simple trigger-level cuts
can greatly reduce the backgrounds due to cosmic-ray muons. For a canonical
Galactic supernova at 10 kpc, about 190 supernova
events would be detected. By adding MiniBooNE to the international network of
supernova detectors, the possibility of a supernova being missed would be
reduced. Additionally, the paths of the supernova neutrinos through Earth will
be different for MiniBooNE and other detectors, thus allowing tests of
matter-affected mixing effects on the neutrino signal.Comment: Added references, version to appear in PR
Resonant Spin-Flavor Conversion of Supernova Neutrinos and Deformation of the Electron Antineutrino Spectrum
The neutrino spin-flavor conversion of \bar\nu_e and \nu_\mu which is induced
by the interaction of the Majorana neutrino magnetic moment and magnetic fields
in the collapse-driven supernova is investigated in detail. We calculate the
conversion probability by using the latest precollapse models of Woosley and
Weaver (1995), and also those of Nomono and Hashimoto (1988), changing the
stellar mass and metallicity in order to estimate the effect of the
astrophysical uncertainties. Contour maps of the conversion probability are
given for all the models as a function of neutrino mass squared difference and
the neutrino magnetic moment times magnetic fields. It is shown that in the
solar metallicity models some observational effects are expected with \Delta
m^2 = 10^{-5}--10^{-1} [eV^2] and \mu_\nu >~ 10^{-12} (10^9 G / B_0) [\mu_B],
where B_0 is the strength of the magnetic fields at the surface of the iron
core. We also find that although the dependence on the stellar models or
stellar mass is not so large, the metallicity of precollapse stars has
considerable effects on this conversion. Such effects may be seen in a
supernova in the Large or Small Magellanic Clouds, and should be taken into
account when one considers an upper bound on \mu_\nu from the SN1987A data.Comment: 19 pages, LaTeX, using revtex. To appear in Phys. Rev. D. 16 figures
attatche
- …