11,292 research outputs found

    Quasi-Local Formulation of Non-Abelian Finite-Element Gauge Theory

    Get PDF
    Recently it was shown how to formulate the finite-element equations of motion of a non-Abelian gauge theory, by gauging the free lattice difference equations, and simultaneously determining the form of the gauge transformations. In particular, the gauge-covariant field strength was explicitly constructed, locally, in terms of a path ordered product of exponentials (link operators). On the other hand, the Dirac and Yang-Mills equations were nonlocal, involving sums over the entire prior lattice. Earlier, Matsuyama had proposed a local Dirac equation constructed from just the above-mentioned link operators. Here, we show how his scheme, which is closely related to our earlier one, can be implemented for a non-Abelian gauge theory. Although both Dirac and Yang-Mills equations are now local, the field strength is not. The technique is illustrated with a direct calculation of the current anomalies in two and four space-time dimensions. Unfortunately, unlike the original finite-element proposal, this scheme is in general nonunitary.Comment: 19 pages, REVTeX, no figure

    Vector Casimir effect for a D-dimensional sphere

    Get PDF
    The Casimir energy or stress due to modes in a D-dimensional volume subject to TM (mixed) boundary conditions on a bounding spherical surface is calculated. Both interior and exterior modes are included. Together with earlier results found for scalar modes (TE modes), this gives the Casimir effect for fluctuating ``electromagnetic'' (vector) fields inside and outside a spherical shell. Known results for three dimensions, first found by Boyer, are reproduced. Qualitatively, the results for TM modes are similar to those for scalar modes: Poles occur in the stress at positive even dimensions, and cusps (logarithmic singularities) occur for integer dimensions D≤1D\le1. Particular attention is given the interesting case of D=2.Comment: 20 pages, 1 figure, REVTe

    Comment on ``Structure of exotic nuclei and superheavy elements in a relativistic shell model''

    Get PDF
    A recent paper [M. Rashdan, Phys. Rev. C 63, 044303 (2001)] introduces the new parameterization NL-RA1 of the relativistic mean-field model which is claimed to give a better description of nuclear properties than earlier ones. Using this model ^{298}114 is predicted to be a doubly-magic nucleus. As will be shown in this comment these findings are to be doubted as they are obtained with an unrealistic parameterization of the pairing interaction and neglecting ground-state deformation.Comment: 2 pages REVTEX, 3 figures, submitted to comment section of Phys. Rev. C. shortened and revised versio

    Pairing gaps from nuclear mean-field models

    Get PDF
    We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei.Comment: 17 pages, 8 figures. Accepted for publication in EPJ

    Consequences of the center-of-mass correction in nuclear mean-field models

    Get PDF
    We study the influence of the scheme for the correction for spurious center-of-mass motion on the fit of effective interactions for self-consistent nuclear mean-field calculations. We find that interactions with very simple center-of-mass correction have significantly larger surface coefficients than interactions for which the center-of-mass correction was calculated for the actual many-body state during the fit. The reason for that is that the effective interaction has to counteract the wrong trends with nucleon number of all simplified schemes for center-of-mass correction which puts a wrong trend with mass number into the effective interaction itself. The effect becomes clearly visible when looking at the deformation energy of largely deformed systems, e.g. superdeformed states or fission barriers of heavy nuclei.Comment: 12 pages LATeX, needs EPJ style files, 5 eps figures, accepted for publication in Eur. Phys. J.

    Hair cortisol concentrations are associated with hippocampal subregional volumes in children

    No full text

    Cross-Document Pattern Matching

    Get PDF
    We study a new variant of the string matching problem called cross-document string matching, which is the problem of indexing a collection of documents to support an efficient search for a pattern in a selected document, where the pattern itself is a substring of another document. Several variants of this problem are considered, and efficient linear-space solutions are proposed with query time bounds that either do not depend at all on the pattern size or depend on it in a very limited way (doubly logarithmic). As a side result, we propose an improved solution to the weighted level ancestor problem

    Pseudo-Hermitian Interactions in Dirac Theory: Examples

    Get PDF
    We consider a couple of examples to study the pseudo-Hermitian interaction in relativistic quantum mechanics. Rasbha interaction, commonly used to study the spin Hall effect, is considered with imaginary coupling. The corresponding Dirac Hamiltonian is shown to be parity pseudo-Hermitian. In the other example we consider parity pseudo-Hermitian scalar interaction with arbitrary parameter in Dirac theory. In both the cases we show that the energy spectrum is real and all the other features of non-relativistic pseudo-Hermitian formulation are present. Using the spectral method the positive definite metric operator (η\eta) has been calculated explicitly for both the models to ensure positive definite norms for the state vectors.Comment: 13 pages, Latex, No figs, Revised version to appear in MPL

    Vacuum Stability of the wrong sign (−ϕ6)(-\phi^{6}) Scalar Field Theory

    Full text link
    We apply the effective potential method to study the vacuum stability of the bounded from above (−ϕ6)(-\phi^{6}) (unstable) quantum field potential. The stability (∂E/∂b=0)\partial E/\partial b=0) and the mass renormalization (∂2E/∂b2=M2)\partial^{2} E/\partial b^{2}=M^{2}) conditions force the effective potential of this theory to be bounded from below (stable). Since bounded from below potentials are always associated with localized wave functions, the algorithm we use replaces the boundary condition applied to the wave functions in the complex contour method by two stability conditions on the effective potential obtained. To test the validity of our calculations, we show that our variational predictions can reproduce exactly the results in the literature for the PT\mathcal{PT}-symmetric ϕ4\phi^{4} theory. We then extend the applications of the algorithm to the unstudied stability problem of the bounded from above (−ϕ6)(-\phi^{6}) scalar field theory where classical analysis prohibits the existence of a stable spectrum. Concerning this, we calculated the effective potential up to first order in the couplings in dd space-time dimensions. We find that a Hermitian effective theory is instable while a non-Hermitian but PT\mathcal{PT}-symmetric effective theory characterized by a pure imaginary vacuum condensate is stable (bounded from below) which is against the classical predictions of the instability of the theory. We assert that the work presented here represents the first calculations that advocates the stability of the (−ϕ6)(-\phi^{6}) scalar potential.Comment: 21pages, 12 figures. In this version, we updated the text and added some figure
    • …
    corecore