Recently it was shown how to formulate the finite-element equations of motion
of a non-Abelian gauge theory, by gauging the free lattice difference
equations, and simultaneously determining the form of the gauge
transformations. In particular, the gauge-covariant field strength was
explicitly constructed, locally, in terms of a path ordered product of
exponentials (link operators). On the other hand, the Dirac and Yang-Mills
equations were nonlocal, involving sums over the entire prior lattice. Earlier,
Matsuyama had proposed a local Dirac equation constructed from just the
above-mentioned link operators. Here, we show how his scheme, which is closely
related to our earlier one, can be implemented for a non-Abelian gauge theory.
Although both Dirac and Yang-Mills equations are now local, the field strength
is not. The technique is illustrated with a direct calculation of the current
anomalies in two and four space-time dimensions. Unfortunately, unlike the
original finite-element proposal, this scheme is in general nonunitary.Comment: 19 pages, REVTeX, no figure