1,347 research outputs found
On the cohomology of stable map spaces
We describe an approach to calculating the cohomology rings of stable map
spaces. The method we use is due to Akildiz-Carrell and employs a C^*-action
and a vector field which is equivariant with respect to this C^*-action. We
give an explicit description of the big Bialynicky-Birula cell of the
C^*-action on Mbar_00(P^n,d) as a vector bundle on Mbar_0d. This is used to
calculate explicitly the cohomology ring of Mbar_00(P^n,d) in the cases d=2 and
d=3. Of particular interest is the case as n approaches infinity.Comment: 63 page
Integrable Boundaries, Conformal Boundary Conditions and A-D-E Fusion Rules
The minimal theories are labelled by a Lie algebra pair where
is of -- type. For these theories on a cylinder we conjecture a
complete set of conformal boundary conditions labelled by the nodes of the
tensor product graph . The cylinder partition functions are given
by fusion rules arising from the graph fusion algebra of . We
further conjecture that, for each conformal boundary condition, an integrable
boundary condition exists as a solution of the boundary Yang-Baxter equation
for the associated lattice model. The theory is illustrated using the
or 3-state Potts model.Comment: 4 pages, REVTe
Extended modular operad
This paper is a sequel to [LoMa] where moduli spaces of painted stable curves
were introduced and studied. We define the extended modular operad of genus
zero, algebras over this operad, and study the formal differential geometric
structures related to these algebras: pencils of flat connections and Frobenius
manifolds without metric. We focus here on the combinatorial aspects of the
picture. Algebraic geometric aspects are treated in [Ma2].Comment: 38 pp., amstex file, no figures. This version contains additional
references and minor change
Donaldson-Thomas invariants and wall-crossing formulas
Notes from the report at the Fields institute in Toronto. We introduce the
Donaldson-Thomas invariants and describe the wall-crossing formulas for
numerical Donaldson-Thomas invariants.Comment: 18 pages. To appear in the Fields Institute Monograph Serie
A Construction of Solutions to Reflection Equations for Interaction-Round-a-Face Models
We present a procedure in which known solutions to reflection equations for
interaction-round-a-face lattice models are used to construct new solutions.
The procedure is particularly well-suited to models which have a known fusion
hierarchy and which are based on graphs containing a node of valency . Among
such models are the Andrews-Baxter-Forrester models, for which we construct
reflection equation solutions for fixed and free boundary conditions.Comment: 9 pages, LaTe
Holomorphic anomaly equations and the Igusa cusp form conjecture
Let be a K3 surface and let be an elliptic curve. We solve the
reduced Gromov-Witten theory of the Calabi-Yau threefold for all
curve classes which are primitive in the K3 factor. In particular, we deduce
the Igusa cusp form conjecture.
The proof relies on new results in the Gromov-Witten theory of elliptic
curves and K3 surfaces. We show the generating series of Gromov-Witten classes
of an elliptic curve are cycle-valued quasimodular forms and satisfy a
holomorphic anomaly equation. The quasimodularity generalizes a result by
Okounkov and Pandharipande, and the holomorphic anomaly equation proves a
conjecture of Milanov, Ruan and Shen. We further conjecture quasimodularity and
holomorphic anomaly equations for the cycle-valued Gromov-Witten theory of
every elliptic fibration with section. The conjecture generalizes the
holomorphic anomaly equations for ellliptic Calabi-Yau threefolds predicted by
Bershadsky, Cecotti, Ooguri, and Vafa. We show a modified conjecture holds
numerically for the reduced Gromov-Witten theory of K3 surfaces in primitive
classes.Comment: 68 page
A Rule-Based Approach to Analyzing Database Schema Objects with Datalog
Database schema elements such as tables, views, triggers and functions are
typically defined with many interrelationships. In order to support database
users in understanding a given schema, a rule-based approach for analyzing the
respective dependencies is proposed using Datalog expressions. We show that
many interesting properties of schema elements can be systematically determined
this way. The expressiveness of the proposed analysis is exemplarily shown with
the problem of computing induced functional dependencies for derived relations.
The propagation of functional dependencies plays an important role in data
integration and query optimization but represents an undecidable problem in
general. And yet, our rule-based analysis covers all relational operators as
well as linear recursive expressions in a systematic way showing the depth of
analysis possible by our proposal. The analysis of functional dependencies is
well-integrated in a uniform approach to analyzing dependencies between schema
elements in general.Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Faktor-faktor yang Mempengaruhi Profitabilitas Lembaga Keuangan Mikro di Kecamatan Tandun Kabupaten Rokan Hulu
FAKTOR-FAKTOR YANG MEMPENGARUHI PROFITABILITAS LEMBAGA KEUANGAN MIKRO DI KECAMATAN TANDUN KABUPATEN ROKAN HUL
Curve counting via stable pairs in the derived category
For a nonsingular projective 3-fold , we define integer invariants
virtually enumerating pairs where is an embedded curve and
is a divisor. A virtual class is constructed on the associated
moduli space by viewing a pair as an object in the derived category of . The
resulting invariants are conjecturally equivalent, after universal
transformations, to both the Gromov-Witten and DT theories of . For
Calabi-Yau 3-folds, the latter equivalence should be viewed as a wall-crossing
formula in the derived category.
Several calculations of the new invariants are carried out. In the Fano case,
the local contributions of nonsingular embedded curves are found. In the local
toric Calabi-Yau case, a completely new form of the topological vertex is
described.
The virtual enumeration of pairs is closely related to the geometry
underlying the BPS state counts of Gopakumar and Vafa. We prove that our
integrality predictions for Gromov-Witten invariants agree with the BPS
integrality. Conversely, the BPS geometry imposes strong conditions on the
enumeration of pairs.Comment: Corrected typos and duality error in Proposition 4.6. 47 page
- …
