Let S be a K3 surface and let E be an elliptic curve. We solve the
reduced Gromov-Witten theory of the Calabi-Yau threefold S×E for all
curve classes which are primitive in the K3 factor. In particular, we deduce
the Igusa cusp form conjecture.
The proof relies on new results in the Gromov-Witten theory of elliptic
curves and K3 surfaces. We show the generating series of Gromov-Witten classes
of an elliptic curve are cycle-valued quasimodular forms and satisfy a
holomorphic anomaly equation. The quasimodularity generalizes a result by
Okounkov and Pandharipande, and the holomorphic anomaly equation proves a
conjecture of Milanov, Ruan and Shen. We further conjecture quasimodularity and
holomorphic anomaly equations for the cycle-valued Gromov-Witten theory of
every elliptic fibration with section. The conjecture generalizes the
holomorphic anomaly equations for ellliptic Calabi-Yau threefolds predicted by
Bershadsky, Cecotti, Ooguri, and Vafa. We show a modified conjecture holds
numerically for the reduced Gromov-Witten theory of K3 surfaces in primitive
classes.Comment: 68 page