7 research outputs found

    First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement

    Full text link
    Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding.Financial support was provided by the Spanish Project INIA (Instituto Nacional de Investigacion y Tecnologia Agraria y Almentaria) RTA2011-00044C02-01, the ANR MELODY (ANR-11-BSV7-0024), the European Research Council (ERCSEXYPARTH), FEDER, and FSE funds. NVD has been awarded a grant by the Andalusian Institute of Agronomy Research IFAPA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Vicente-Dolera, N.; Troadec, C.; Moya, M.; Río-Celestino, MD.; Pomares-Viciana, T.; Bendahmane, A.; Picó Sirvent, MB.... (2014). First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement. PLoS ONE. 9(11):112743-112743. https://doi.org/10.1371/journal.pone.0112743S112743112743911Paris, H. S., Yonash, N., Portnoy, V., Mozes-Daube, N., Tzuri, G., & Katzir, N. (2002). Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theoretical and Applied Genetics, 106(6), 971-978. doi:10.1007/s00122-002-1157-0Parry, M. A. J., Madgwick, P. J., Bayon, C., Tearall, K., Hernandez-Lopez, A., Baudo, M., … Phillips, A. L. (2009). Mutation discovery for crop improvement. Journal of Experimental Botany, 60(10), 2817-2825. doi:10.1093/jxb/erp189Gilchrist, E., & Haughn, G. (2010). Reverse genetics techniques: engineering loss and gain of gene function in plants. Briefings in Functional Genomics, 9(2), 103-110. doi:10.1093/bfgp/elp059McCallum, C. M., Comai, L., Greene, E. A., & Henikoff, S. (2000). Targeting Induced LocalLesions IN Genomes (TILLING) for Plant Functional Genomics. Plant Physiology, 123(2), 439-442. doi:10.1104/pp.123.2.439Colbert, T., Till, B. J., Tompa, R., Reynolds, S., Steine, M. N., Yeung, A. T., … Henikoff, S. (2001). High-Throughput Screening for Induced Point Mutations. Plant Physiology, 126(2), 480-484. doi:10.1104/pp.126.2.480Wang, T. L., Uauy, C., Robson, F., & Till, B. (2012). TILLINGin extremis. Plant Biotechnology Journal, 10(7), 761-772. doi:10.1111/j.1467-7652.2012.00708.xDong, C., Dalton-Morgan, J., Vincent, K., & Sharp, P. (2009). A Modified TILLING Method for Wheat Breeding. The Plant Genome Journal, 2(1), 39. doi:10.3835/plantgenome2008.10.0012Uauy, C., Paraiso, F., Colasuonno, P., Tran, R. K., Tsai, H., Berardi, S., … Dubcovsky, J. (2009). A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biology, 9(1), 115. doi:10.1186/1471-2229-9-115Kumar, A. P., Boualem, A., Bhattacharya, A., Parikh, S., Desai, N., Zambelli, A., … Bendahmane, A. (2013). SMART -- Sunflower Mutant population And Reverse genetic Tool for crop improvement. BMC Plant Biology, 13(1), 38. doi:10.1186/1471-2229-13-38Kurowska, M., Daszkowska-Golec, A., Gruszka, D., Marzec, M., Szurman, M., Szarejko, I., & Maluszynski, M. (2011). TILLING - a shortcut in functional genomics. Journal of Applied Genetics, 52(4), 371-390. doi:10.1007/s13353-011-0061-1Rigola, D., van Oeveren, J., Janssen, A., Bonné, A., Schneiders, H., van der Poel, H. J. A., … van Eijk, M. J. T. (2009). High-Throughput Detection of Induced Mutations and Natural Variation Using KeyPoint™ Technology. PLoS ONE, 4(3), e4761. doi:10.1371/journal.pone.0004761González, M., Xu, M., Esteras, C., Roig, C., Monforte, A. J., Troadec, C., … Picó, B. (2011). Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 4(1). doi:10.1186/1756-0500-4-289Elias, R., Till, B. J., Mba, C., & Al-Safadi, B. (2009). Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L). BMC Research Notes, 2(1), 141. doi:10.1186/1756-0500-2-141Dahmani-Mardas, F., Troadec, C., Boualem, A., Lévêque, S., Alsadon, A. A., Aldoss, A. A., … Bendahmane, A. (2010). Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach. PLoS ONE, 5(12), e15776. doi:10.1371/journal.pone.0015776Boualem, A., Fleurier, S., Troadec, C., Audigier, P., Kumar, A. P. K., Chatterjee, M., … Bendahmane, A. (2014). Development of a Cucumis sativus TILLinG Platform for Forward and Reverse Genetics. PLoS ONE, 9(5), e97963. doi:10.1371/journal.pone.0097963Blanca, J., Cañizares, J., Roig, C., Ziarsolo, P., Nuez, F., & Picó, B. (2011). Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics, 12(1). doi:10.1186/1471-2164-12-104Esteras, C., Gomez, P., Monforte, A. J., Blanca, J., Vicente-Dolera, N., Roig, C., … Pico, B. (2012). High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics, 13(1), 80. doi:10.1186/1471-2164-13-80Vicente-Dólera, N., Pinillos, V., Moya, M., Del Río-Celestino, M., Pomares-Viciana, T., Román, B., & Gómez, P. (2014). An improved method to obtain novel mutants in Cucurbita pepo by pollen viability. Scientia Horticulturae, 169, 14-19. doi:10.1016/j.scienta.2014.01.045Martín, B., Ramiro, M., Martínez-Zapater, J. M., & Alonso-Blanco, C. (2009). A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis. BMC Plant Biology, 9(1), 147. doi:10.1186/1471-2229-9-147Wienholds, E. (2003). Efficient Target-Selected Mutagenesis in Zebrafish. Genome Research, 13(12), 2700-2707. doi:10.1101/gr.1725103Dalmais, M., Schmidt, J., Le Signor, C., Moussy, F., Burstin, J., Savois, V., … Bendahmane, A. (2008). UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biology, 9(2), R43. doi:10.1186/gb-2008-9-2-r43Triques, K., Sturbois, B., Gallais, S., Dalmais, M., Chauvin, S., Clepet, C., … Bendahmane, A. (2007). Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. The Plant Journal, 51(6), 1116-1125. doi:10.1111/j.1365-313x.2007.03201.xTaylor, N. E. (2003). PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Research, 31(13), 3808-3811. doi:10.1093/nar/gkg574Ng, P. C. (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812-3814. doi:10.1093/nar/gkg509Obrero, Á., González-Verdejo, C. I., Die, J. V., Gómez, P., Del Río-Celestino, M., & Román, B. (2013). Carotenogenic Gene Expression and Carotenoid Accumulation in Three Varieties of Cucurbita pepo during Fruit Development. Journal of Agricultural and Food Chemistry, 61(26), 6393-6403. doi:10.1021/jf4004576Cosio, C., Vuillemin, L., De Meyer, M., Kevers, C., Penel, C., & Dunand, C. (2009). An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta, 229(4), 823-836. doi:10.1007/s00425-008-0876-0Sisko, M. (2003). Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryo-rescue technique. Plant Science, 165(3), 663-669. doi:10.1016/s0168-9452(03)00256-5Campa A (1991) Biological roles of plant peroxidases: known and potential function. In Peroxidases in Chemistry and Biology Vol. II. (Everse, J., Everse, K.E. & Grisham, M.B., eds), pp. 25–50, CRC Press, Boca Raton, FL.Schuller, D. J., Ban, N., van Huystee, R. B., McPherson, A., & Poulos, T. L. (1996). The crystal structure of peanut peroxidase. Structure, 4(3), 311-321. doi:10.1016/s0969-2126(96)00035-4Stephenson, P., Baker, D., Girin, T., Perez, A., Amoah, S., King, G. J., & Østergaard, L. (2010). A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biology, 10(1), 62. doi:10.1186/1471-2229-10-62Suzuki, T., Eiguchi, M., Kumamaru, T., Satoh, H., Matsusaka, H., Moriguchi, K., … Kurata, N. (2007). MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Molecular Genetics and Genomics, 279(3), 213-223. doi:10.1007/s00438-007-0293-2Chantreau, M., Grec, S., Gutierrez, L., Dalmais, M., Pineau, C., Demailly, H., … Hawkins, S. (2013). PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics. BMC Plant Biology, 13(1), 159. doi:10.1186/1471-2229-13-159Rawat, N., Sehgal, S. K., Joshi, A., Rothe, N., Wilson, D. L., McGraw, N., … Gill, B. S. (2012). A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biology, 12(1), 205. doi:10.1186/1471-2229-12-205Minoia, S., Petrozza, A., D’Onofrio, O., Piron, F., Mosca, G., Sozio, G., … Carriero, F. (2010). A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Research Notes, 3(1). doi:10.1186/1756-0500-3-69Markiewicz, P., Kleina, L. G., Cruz, C., Ehret, S., & Miller, J. H. (1994). Genetic Studies of the lac Repressor. XIV. Analysis of 4000 Altered Escherichia coli lac Repressors Reveals Essential and Non-essential Residues, as well as «Spacers» which do not Require a Specific Sequence. Journal of Molecular Biology, 240(5), 421-433. doi:10.1006/jmbi.1994.1458Carpin, S., Crèvecoeur, M., Greppin, H., & Penel, C. (1999). Molecular Cloning and Tissue-Specific Expression of an Anionic Peroxidase in Zucchini. Plant Physiology, 120(3), 799-810. doi:10.1104/pp.120.3.799Welinder, K. G., Justesen, A. F., Kjaersgård, I. V. H., Jensen, R. B., Rasmussen, S. K., Jespersen, H. M., & Duroux, L. (2002). Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. European Journal of Biochemistry, 269(24), 6063-6081. doi:10.1046/j.1432-1033.2002.03311.

    Preventive Chair Massage With Algometry to Maintain Psychosomatic Balance in White-collar Workers

    No full text
    People working at computers often suffer from overload-related muscle pain, and physical and mental discomfort. The aim of the study was to evaluate the effectiveness of chair massage, conducted in the workplace among white-collar workers, in relieving symptoms of musculoskeletal strain related to prolonged sitting posture. The study was conducted in 124 white-collar workers, 55 women and 69 men, aged 33.7 +/- 7.6 years. Subjects were randomly assigned to three groups: chair massage program, relaxing music sessions, and a control group, each of four-week duration. Each group was evaluated before and after the program completion. Pain perception was assessed algometrically as a threshold for compression pain of neck muscles, measured in kg/cm(2). The relaxation level was assessed from the heart rate variability. We found that the chair massage increased both the pain threshold in all tested muscles (p \u3c 0.001) and the relaxation level from 31.9% to 41.6% (p \u3c 0.05). In the group with music sessions, muscle pain threshold remained unchanged, except for the trapezoid muscle where it decreased (p \u3c 0.05), while the relaxation level increased from 26.0% to 33.3% (p \u3c 0.05). In both massage and relaxing music groups, there was a significant decrease in muscle tension (p \u3c 0.01). Changes in the control group were inappreciable. We conclude that the chair massage performed in the workplace is an effective method for prevention of musculoskeletal overstrain related to prolonged sitting posture. The program seems worth implementing in various occupational environments
    corecore