10 research outputs found

    Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth in Europe's alien and native floras

    Get PDF
    Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species' distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders - abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species' introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions - for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.Deutsche Forschungsgemeinschaft (264740629) Grantová Agentura České Republiky (19-28491X) Grantová Agentura České Republiky (19-28807X) Grantová Agentura České Republiky (RVO 67985939) Austrian Science Fund (I 2086 - B29) Bundesministerium für Bildung und Forschung (01LC1807A) Eusko Jaurlaritza (IT299-10) National Research Foundation of Korea (2018R1C1B6005351) University of Latvia (AAp2016/B041//Zd2016/AZ03) Villum Fonden (16549

    Distribution maps of vegetation alliances in Europe

    Get PDF
    Aim The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps

    Distribution maps of vegetation alliances in Europe

    Get PDF
    Aim The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps

    European weed vegetation database – A gap-focused vegetation-plot database

    No full text
    This report presents the European Weed Vegetation Database, a new database of vegetation plots documenting short-lived vegetation of arable and ruderal habitats from Europe and Macaronesia. The database comprises the phytosociological classes Papaveretea rhoeadis, Sisymbrietea, Chenopodietea and Digitario sanguinalis-Eragrostietea minoris. It is a gap-focused database containing mainly plots of this vegetation from the areas not yet represented in the European Vegetation Archive (EVA), to facilitate its accessibility for researchers to answer various questions. As of the end of 2018, it contained 24,734 plots, predominantly from Southern Europe. The data can be used for phytosociological studies, various kinds of interdisciplinary research as well as for studies for agronomy, nature management and biodiversity conservation. Syntaxonomic reference: Mucina et al. (2016) Abbreviations: EVA = European Vegetation Archive; GIVD = Global Index of Vegetation-Plot Databases

    sPlot – A new tool for global vegetation analyses

    No full text
    © 2019 International Association for Vegetation Science Aims: Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale

    sPlot – A new tool for global vegetation analyses

    No full text
    © 2019 International Association for Vegetation Science Aims: Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    Get PDF
    © 2020 The Authors. Applied Vegetation Science published by John Wiley & Sons Ltd on behalf of International Association for Vegetation Science. Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation-plot records to the habitats of the EUNIS system, use it to classify a European vegetation-plot database, and compile statistically-derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS-ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set-theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species-to-habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man-made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS-ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    No full text
    Aim The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location Europe. Methods We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment

    sPlot - A new tool for global vegetation analyses

    No full text
    Aims: Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale
    corecore