383 research outputs found
Phase Diagram for Ultracold Bosons in Optical Lattices and Superlattices
We present an analytic description of the finite-temperature phase diagram of
the Bose-Hubbard model, successfully describing the physics of cold bosonic
atoms trapped in optical lattices and superlattices. Based on a standard
statistical mechanics approach, we provide the exact expression for the
boundary between the superfluid and the normal fluid by solving the
self-consistency equations involved in the mean-field approximation to the
Bose-Hubbard model. The zero-temperature limit of such result supplies an
analytic expression for the Mott lobes of superlattices, characterized by a
critical fractional filling.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
Dressed matter waves
We suggest to view ultracold atoms in a time-periodically shifted optical
lattice as a "dressed matter wave", analogous to a dressed atom in an
electromagnetic field. A possible effect lending support to this concept is a
transition of ultracold bosonic atoms from a superfluid to a Mott-insulating
state in response to appropriate "dressing" achieved through time-periodic
lattice modulation. In order to observe this effect in a laboratory experiment,
one has to identify conditions allowing for effectively adiabatic motion of a
many-body Floquet state.Comment: 9 pages, 4 figures, to be published in: J. Phys.: Conference Serie
1D Bose Gases in an Optical Lattice
We report on the study of the momentum distribution of a one-dimensional Bose
gas in an optical lattice. From the momentum distribution we extract the
condensed fraction of the gas and thereby measure the depletion of the
condensate and compare it with a theorical estimate. We have measured the
coherence length of the gas for systems with average occupation and
per lattice site.Comment: 4 pages, 3 figure
The low-energy theory for the Bose-Hubbard model and the normal ground state of bosons
A bosonic realization of the SU(2) Lie algebra and of its vector
representation is constructed, and an effective low-energy description of the
Bose-Hubbard model in the form of anisotropic theory of quantum rotors is
proposed and discussed. A possibility of a normal zero-temperature bosonic
phase with neither crystalline nor superfluid order around the tip of the
checkerboard-solid lobe at half-integer fillings is examined.Comment: 8 pages, LaTex, one postscript figur
Transport and Entanglement Generation in the Bose-Hubbard Model
We study entanglement generation via particle transport across a
one-dimensional system described by the Bose-Hubbard Hamiltonian. We analyze
how the competition between interactions and tunneling affects transport
properties and the creation of entanglement in the occupation number basis.
Alternatively, we propose to use spatially delocalized quantum bits, where a
quantum bit is defined by the presence of a particle either in a site or in the
adjacent one. Our results can serve as a guidance for future experiments to
characterize entanglement of ultracold gases in one-dimensional optical
lattices.Comment: 14 pages, 6 figure
- …