18 research outputs found

    Dynamic modelling and control for assessment of large-scale wind and solar integration in power systems

    Get PDF
    The integration of variable and unpredictable renewable energy sources into the current power networks introduces considerable changes in system operations. This poses enormous threats to the stability of the power system. Hence, it is essential to analyse the necessary adjustments in operation strategies in preparation for increased amounts of variable generation in existing power systems. The present study describes the dynamic modelling and integration of solar photovoltaic and wind power generation systems into a transient stability analysis toolbox. In view of the inherent connection of renewable energy generators to the electrical network through converter systems, the main contribution in the present study is the development of high‐level control functions to model converter interfaces with reference to standard grid operation codes. The dynamic models and corresponding control functions are tested using a network representing the transmission grid of the Baden‐Württemberg state in Germany as part of the assessment process to analyse the capability of the control functions for grid stability support. The simulation results show that the proposed converter control functions can equip renewable energy generators with equivalent features from a functional point of view to those of synchronous generators

    A New Framework for the Analysis of Large Scale Multi-Rate Power Data

    Get PDF
    A new framework for the analysis of large scale, multi-rate power data is introduced. The system comprises high rate power grid data acquisition devices, software modules for big data management and large scale time series analysis. The power grid modeling and simulation modules enable to run power flow simulations. Visualization methods support data exploration for captured, simulated and analyzed energy data. A remote software control module for the proposed tools is provided

    Impact of grid partitioning algorithms on combined distributed AC optimal power flow and parallel dynamic power grid simulationn

    Get PDF
    The complexity of most power grid simulation algorithms scales with the network size, which corresponds to the number of buses and branches in the grid. Parallel and distributed computing is one approach that can be used to achieve improved scalability. However, the efficiency of these algorithms requires an optimal grid partitioning strategy. To obtain the requisite power grid partitionings, the authors first apply several graph theory based partitioning algorithms, such as the Karlsruhe fast flow partitioner (KaFFPa), spectral clustering, and METIS. The goal of this study is an examination and evaluation of the impact of grid partitioning on power system problems. To this end, the computational performance of AC optimal power flow (OPF) and dynamic power grid simulation are tested. The partitioned OPF-problem is solved using the augmented Lagrangian based alternating direction inexact Newton method, whose solution is the basis for the initialisation step in the partitioned dynamic simulation problem. The computational performance of the partitioned systems in the implemented parallel and distributed algorithms is tested using various IEEE standard benchmark test networks. KaFFPa not only outperforms other partitioning algorithms for the AC OPF problem, but also for dynamic power grid simulation with respect to computational speed and scalability

    Data-Driven Copy-Paste Imputation for Energy Time Series

    Get PDF
    A cornerstone of the worldwide transition to smart grids are smart meters. Smart meters typically collect and provide energy time series that are vital for various applications, such as grid simulations, fault-detection, load forecasting, load analysis, and load management. Unfortunately, these time series are often characterized by missing values that must be handled before the data can be used. A common approach to handle missing values in time series is imputation. However, existing imputation methods are designed for power time series and do not take into account the total energy of gaps, resulting in jumps or constant shifts when imputing energy time series. In order to overcome these issues, the present paper introduces the new Copy-Paste Imputation (CPI) method for energy time series. The CPI method copies data blocks with similar characteristics and pastes them into gaps of the time series while preserving the total energy of each gap. The new method is evaluated on a real-world dataset that contains six shares of artificially inserted missing values between 1 and 30%. It outperforms the three benchmark imputation methods selected for comparison. The comparison furthermore shows that the CPI method uses matching patterns and preserves the total energy of each gap while requiring only a moderate run-time

    Data-Driven Copy-Paste Imputation for Energy Time Series

    Get PDF
    A cornerstone of the worldwide transition to smart grids are smart meters. Smart meters typically collect and provide energy time series that are vital for various applications, such as grid simulations, fault-detection, load forecasting, load analysis, and load management. Unfortunately, these time series are often characterized by missing values that must be handled before the data can be used. A common approach to handle missing values in time series is imputation. However, existing imputation methods are designed for power time series and do not take into account the total energy of gaps, resulting in jumps or constant shifts when imputing energy time series. In order to overcome these issues, the present paper introduces the new Copy-Paste Imputation (CPI) method for energy time series. The CPI method copies data blocks with similar properties and pastes them into gaps of the time series while preserving the total energy of each gap. The new method is evaluated on a real-world dataset that contains six shares of artificially inserted missing values between 1 and 30%. It outperforms by far the three benchmark imputation methods selected for comparison. The comparison furthermore shows that the CPI method uses matching patterns and preserves the total energy of each gap while requiring only a moderate run-time.Comment: 8 pages, 7 figures, submitted to IEEE Transactions on Smart Grid, the first two authors equally contributed to this wor

    Data processing of high-rate low-voltage distribution grid recordings for smart grid monitoring and analysis

    Get PDF
    Power networks will change from a rigid hierarchic architecture to dynamic interconnected smart grids. In traditional power grids, the frequency is the controlled quantity to maintain supply and load power balance. Thereby, high rotating mass inertia ensures for stability. In the future, system stability will have to rely more on real-time measurements and sophisticated control, especially when integrating fluctuating renewable power sources or high-load consumers like electrical vehicles to the low-voltage distribution grid. In the present contribution, we describe a data processing network for the in-house developed low-voltage, high-rate measurement devices called electrical data recorder (EDR). These capture units are capable of sending the full high-rate acquisition data for permanent storage in a large-scale database. The EDR network is specifically designed to serve for reliable and secured transport of large data, live performance monitoring, and deep data mining. We integrate dedicated different interfaces for statistical evaluation, big data queries, comparative analysis, and data integrity tests in order to provide a wide range of useful post-processing methods for smart grid analysis. We implemented the developed EDR network architecture for high-rate measurement data processing and management at different locations in the power grid of our Institute. The system runs stable and successfully collects data since several years. The results of the implemented evaluation functionalities show the feasibility of the implemented methods for signal processing, in view of enhanced smart grid operation. © 2015, Maaß et al.; licensee Springer

    Predicting the power grid frequency of European islands

    Get PDF
    Modelling, forecasting and overall understanding of the dynamics of the power grid and its frequency is essential for the safe operation of existing and future power grids. Much previous research was focused on large continental areas, while small systems, such as islands are less well-studied. These natural island systems are ideal testing environments for microgrid proposals and artificially islanded grid operation. In the present paper, we utilize measurements of the power grid frequency obtained in European islands: the Faroe Islands, Ireland, the Balearic Islands and Iceland and investigate how their frequency can be predicted, compared to the Nordic power system, acting as a reference. The Balearic islands are found to be particularly deterministic and easy to predict in contrast to hard-to-predict Iceland. Furthermore, we show that typically 2-4 weeks of data are needed to improve prediction performance beyond simple benchmarks.Comment: 16 page

    Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow

    Get PDF
    The uncertainty associated with renewable energies creates challenges in the operation of distribution grids. One way for Distribution System Operators to deal with this is the computation of probabilistic forecasts of the full state of the grid. Recently, probabilistic forecasts have seen increased interest for quantifying the uncertainty of renewable generation and load. However, individual probabilistic forecasts of the state defining variables do not allow the prediction of the probability of joint events, for instance, the probability of two line flows exceeding their limits simultaneously. To overcome the issue of estimating the probability of joint events, we present an approach that combines data-driven probabilistic forecasts (obtained more specifically with quantile regressions) and probabilistic power flow. Moreover, we test the presented method using data from a real-world distribution grid that is part of the Energy Lab 2.0 of the Karlsruhe Institute of Technology and we implement it within a state-of-the-art computational framework
    corecore